47 resultados para boundary controllability
Resumo:
Let (M, g) be a complete Riemannian Manifold, Omega subset of M an open subset whose closure is diffeomorphic to an annulus. If partial derivative Omega is smooth and it satisfies a strong concavity assumption, then it is possible to prove that there are at least two geometrically distinct geodesics in (Omega) over bar = Omega boolean OR partial derivative Omega starting orthogonally to one connected component of partial derivative Omega and arriving orthogonally onto the other one. The results given in [6] allow to obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct brake orbits for a. class of Hamiltonian systems. Under a further symmetry assumption, it is possible to show the existence of at least dim(M) pairs of geometrically distinct geodesics as above, brake orbits and homoclinics.
Resumo:
Let M be a possibly noncompact manifold. We prove, generically in the C(k)-topology (2 <= k <= infinity), that semi-Riemannian metrics of a given index on M do not possess any degenerate geodesics satisfying suitable boundary conditions. This extends a result of L. Biliotti, M. A. Javaloyes and P. Piccione [6] for geodesics with fixed endpoints to the case where endpoints lie on a compact submanifold P subset of M x M that satisfies an admissibility condition. Such condition holds, for example, when P is transversal to the diagonal Delta subset of M x M. Further aspects of these boundary conditions are discussed and general conditions under which metrics without degenerate geodesics are C(k)-generic are given.