78 resultados para bayesian inference
Resumo:
Over the years, crop insurance programs became the focus of agricultural policy in the USA, Spain, Mexico, and more recently in Brazil. Given the increasing interest in insurance, accurate calculation of the premium rate is of great importance. We address the crop-yield distribution issue and its implications in pricing an insurance contract considering the dynamic structure of the data and incorporating the spatial correlation in the Hierarchical Bayesian framework. Results show that empirical (insurers) rates are higher in low risk areas and lower in high risk areas. Such methodological improvement is primarily important in situations of limited data.
Resumo:
This paper addresses the investment decisions considering the presence of financial constraints of 373 large Brazilian firms from 1997 to 2004, using panel data. A Bayesian econometric model was used considering ridge regression for multicollinearity problems among the variables in the model. Prior distributions are assumed for the parameters, classifying the model into random or fixed effects. We used a Bayesian approach to estimate the parameters, considering normal and Student t distributions for the error and assumed that the initial values for the lagged dependent variable are not fixed, but generated by a random process. The recursive predictive density criterion was used for model comparisons. Twenty models were tested and the results indicated that multicollinearity does influence the value of the estimated parameters. Controlling for capital intensity, financial constraints are found to be more important for capital-intensive firms, probably due to their lower profitability indexes, higher fixed costs and higher degree of property diversification.
Resumo:
Fuzzy Bayesian tests were performed to evaluate whether the mother`s seroprevalence and children`s seroconversion to measles vaccine could be considered as ""high"" or ""low"". The results of the tests were aggregated into a fuzzy rule-based model structure, which would allow an expert to influence the model results. The linguistic model was developed considering four input variables. As the model output, we obtain the recommended age-specific vaccine coverage. The inputs of the fuzzy rules are fuzzy sets and the outputs are constant functions, performing the simplest Takagi-Sugeno-Kang model. This fuzzy approach is compared to a classical one, where the classical Bayes test was performed. Although the fuzzy and classical performances were similar, the fuzzy approach was more detailed and revealed important differences. In addition to taking into account subjective information in the form of fuzzy hypotheses it can be intuitively grasped by the decision maker. Finally, we show that the Bayesian test of fuzzy hypotheses is an interesting approach from the theoretical point of view, in the sense that it combines two complementary areas of investigation, normally seen as competitive. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
The distribution of masses for neutron stars is analysed using the Bayesian statistical inference, evaluating the likelihood of the proposed Gaussian peaks by using 54 measured points obtained in a variety of systems. The results strongly suggest the existence of a bimodal distribution of the masses, with the first peak around 1.37 M(circle dot) and a much wider second peak at 1.73 M(circle dot). The results support earlier views related to the different evolutionary histories of the members for the first two peaks, which produces a natural separation (even if no attempt to `label` the systems has been made here). They also accommodate the recent findings of similar to M(circle dot) masses quite naturally. Finally, we explore the existence of a subgroup around 1.25 M(circle dot), finding weak, if any, evidence for it. This recently claimed low-mass subgroup, possibly related to the O-Mg-Ne core collapse events, has a monotonically decreasing likelihood and does not stand out clearly from the rest of the sample.
Resumo:
The kinematic expansion history of the universe is investigated by using the 307 supernovae type Ia from the Union Compilation set. Three simple model parameterizations for the deceleration parameter ( constant, linear and abrupt transition) and two different models that are explicitly parametrized by the cosmic jerk parameter ( constant and variable) are considered. Likelihood and Bayesian analyses are employed to find best fit parameters and compare models among themselves and with the flat Lambda CDM model. Analytical expressions and estimates for the deceleration and cosmic jerk parameters today (q(0) and j(0)) and for the transition redshift (z(t)) between a past phase of cosmic deceleration to a current phase of acceleration are given. All models characterize an accelerated expansion for the universe today and largely indicate that it was decelerating in the past, having a transition redshift around 0.5. The cosmic jerk is not strongly constrained by the present supernovae data. For the most realistic kinematic models the 1 sigma confidence limits imply the following ranges of values: q(0) is an element of [-0.96, -0.46], j(0) is an element of [-3.2,-0.3] and z(t) is an element of [0.36, 0.84], which are compatible with the Lambda CDM predictions, q(0) = -0.57 +/- 0.04, j(0) = -1 and z(t) = 0.71 +/- 0.08. We find that even very simple kinematic models are equally good to describe the data compared to the concordance Lambda CDM model, and that the current observations are not powerful enough to discriminate among all of them.
Resumo:
Molecular and morphological data have shown that Bombacoideae and Malvoideae together form a well-supported Malvatheca clade. Phylogenetic relationships in Bombacoideae have been studied, but some genera in Bombax s. I. have not been adequately sampled for sufficiently variable molecular markers. The relationships of Eriotheca, for example, have yet to be resolved. Here, nuclear (ITS) and chloroplast (trnL-Fand matK) sequence data from 50 exemplars of Bombacoideae and seven additional taxa from other genera of Malvatheca were used to test monophyly of Eriotheca and its relationships with related genera of Bombax s. I. Parsimony and Bayesian analyses of individual and combined sequence data suggest that Eriotheca is not monophyletic as currently circumscribed but forms a paraphyletic grade containing Pachira s. 1. The newly discovered Eriotheca + Pachira clade has a probable synapomorphy of striate seeds. In addition, two other moderately supported clades emerged within the core Bombacoideae: Pseudobombax + Ceiba s. 1. and Bombax + Spirotheca + Pachira quinata. These three clades, and the African Rhodognaphalon together constitute the major clade of core Bombacoideae, whereas Adansonia appears to be more closely related to Catostemma, Scleronema, and Cavanillesia. The phylogenetic results imply three independent migrations from the New to Old World and homoplasy in staminal morphology.
Resumo:
Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diversity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller ""unplaced"" groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees. Consistent with more weakly supported results from previous studies, our analyses support the monophyly of the four major clades and the relationships among them. Most importantly, Asterales are inferred to be sister to a clade containing Apiales and Dipsacales. Paracryphiaceae is consistently placed sister to the Dipsacales. However, the exact relationships of Bruniaceae, Columelliaceae, and an Escallonia clade depended upon the dataset. Areas of poor resolution in combined analyses may be partly explained by conflict between the coding and non-coding data partitions. We discuss the implications of these results for our understanding of campanulid phylogeny and evolution, paying special attention to how our findings bear on character evolution and biogeography in Dipsacales.
Resumo:
GB virus C/hepatitis G (GBV-C) is an RNA virus of the family Flaviviridae. Despite replicating with an RNA-dependent RNA polymerase, some previous estimates of rates of evolutionary change in GBV-C suggest that it fixes mutations at the anomalously low rate of similar to 100(-7) nucleotide substitution per site, per year. However, these estimates were largely based on the assumption that GBV-C and its close relative GBV-A (New World monkey GB viruses) codiverged with their primate hosts over millions of years. Herein, we estimated the substitution rate of GBV-C using the largest set of dated GBV-C isolates compiled to date and a Bayesian coalescent approach that utilizes the year of sampling and so is independent of the assumption of codivergence. This revealed a rate of evolutionary change approximately four orders of magnitude higher than that estimated previously, in the range of 10(-2) to 10(-3) sub/site/year, and hence in line with those previously determined for RNA viruses in general and the Flaviviridae in particular. In addition, we tested the assumption of host-virus codivergence in GBV-A by performing a reconciliation analysis of host and virus phylogenies. Strikingly, we found no statistical evidence for host-virus codivergence in GBV-A, indicating that substitution rates in the GB viruses should not be estimated from host divergence times.
Resumo:
This work proposes and discusses an approach for inducing Bayesian classifiers aimed at balancing the tradeoff between the precise probability estimates produced by time consuming unrestricted Bayesian networks and the computational efficiency of Naive Bayes (NB) classifiers. The proposed approach is based on the fundamental principles of the Heuristic Search Bayesian network learning. The Markov Blanket concept, as well as a proposed ""approximate Markov Blanket"" are used to reduce the number of nodes that form the Bayesian network to be induced from data. Consequently, the usually high computational cost of the heuristic search learning algorithms can be lessened, while Bayesian network structures better than NB can be achieved. The resulting algorithms, called DMBC (Dynamic Markov Blanket Classifier) and A-DMBC (Approximate DMBC), are empirically assessed in twelve domains that illustrate scenarios of particular interest. The obtained results are compared with NB and Tree Augmented Network (TAN) classifiers, and confinn that both proposed algorithms can provide good classification accuracies and better probability estimates than NB and TAN, while being more computationally efficient than the widely used K2 Algorithm.
Resumo:
It is known that patients may cease participating in a longitudinal study and become lost to follow-up. The objective of this article is to present a Bayesian model to estimate the malaria transition probabilities considering individuals lost to follow-up. We consider a homogeneous population, and it is assumed that the considered period of time is small enough to avoid two or more transitions from one state of health to another. The proposed model is based on a Gibbs sampling algorithm that uses information of lost to follow-up at the end of the longitudinal study. To simulate the unknown number of individuals with positive and negative states of malaria at the end of the study and lost to follow-up, two latent variables were introduced in the model. We used a real data set and a simulated data to illustrate the application of the methodology. The proposed model showed a good fit to these data sets, and the algorithm did not show problems of convergence or lack of identifiability. We conclude that the proposed model is a good alternative to estimate probabilities of transitions from one state of health to the other in studies with low adherence to follow-up.
Resumo:
In this paper, we present different ofrailtyo models to analyze longitudinal data in the presence of covariates. These models incorporate the extra-Poisson variability and the possible correlation among the repeated counting data for each individual. Assuming a CD4 counting data set in HIV-infected patients, we develop a hierarchical Bayesian analysis considering the different proposed models and using Markov Chain Monte Carlo methods. We also discuss some Bayesian discrimination aspects for the choice of the best model.
Resumo:
Sensitivity and specificity are measures that allow us to evaluate the performance of a diagnostic test. In practice, it is common to have situations where a proportion of selected individuals cannot have the real state of the disease verified, since the verification could be an invasive procedure, as occurs with biopsy. This happens, as a special case, in the diagnosis of prostate cancer, or in any other situation related to risks, that is, not practicable, nor ethical, or in situations with high cost. For this case, it is common to use diagnostic tests based only on the information of verified individuals. This procedure can lead to biased results or workup bias. In this paper, we introduce a Bayesian approach to estimate the sensitivity and the specificity for two diagnostic tests considering verified and unverified individuals, a result that generalizes the usual situation based on only one diagnostic test.
Resumo:
In this paper, we compare the performance of two statistical approaches for the analysis of data obtained from the social research area. In the first approach, we use normal models with joint regression modelling for the mean and for the variance heterogeneity. In the second approach, we use hierarchical models. In the first case, individual and social variables are included in the regression modelling for the mean and for the variance, as explanatory variables, while in the second case, the variance at level 1 of the hierarchical model depends on the individuals (age of the individuals), and in the level 2 of the hierarchical model, the variance is assumed to change according to socioeconomic stratum. Applying these methodologies, we analyze a Colombian tallness data set to find differences that can be explained by socioeconomic conditions. We also present some theoretical and empirical results concerning the two models. From this comparative study, we conclude that it is better to jointly modelling the mean and variance heterogeneity in all cases. We also observe that the convergence of the Gibbs sampling chain used in the Markov Chain Monte Carlo method for the jointly modeling the mean and variance heterogeneity is quickly achieved.
Resumo:
In this paper, we introduce a Bayesian analysis for survival multivariate data in the presence of a covariate vector and censored observations. Different ""frailties"" or latent variables are considered to capture the correlation among the survival times for the same individual. We assume Weibull or generalized Gamma distributions considering right censored lifetime data. We develop the Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods.
Resumo:
In this paper we deal with a Bayesian analysis for right-censored survival data suitable for populations with a cure rate. We consider a cure rate model based on the negative binomial distribution, encompassing as a special case the promotion time cure model. Bayesian analysis is based on Markov chain Monte Carlo (MCMC) methods. We also present some discussion on model selection and an illustration with a real dataset.