76 resultados para Worsnop, Douglas
Resumo:
Background and purpose: Benznidazole (Bz) is the therapy currently available for clinical treatment of Chagas` disease. However, many strains of Trypanosoma cruzi parasites are naturally resistant. Nitric oxide (NO) produced by activated macrophages is crucial to the intracellular killing of parasites. Here, we investigate the in vitro and in vivo activities against T. cruzi, of the NO donor, trans-[RuCl([15]aneN(4))NO]2+. Experimental approach: Trans-[RuCl([15]aneN(4))NO]2+ was incubated with a partially drug-resistant T. cruzi Y strain and the anti-proliferative (epimastigote form) and trypanocidal activities (trypomastigote and amastigote) evaluated. Mice were treated during the acute phase of Chagas` disease. The anti-T. cruzi activity was evaluated by parasitaemia, survival rate, cardiac parasitism, myocarditis and the curative rate. Key results: Trans-[RuCl([15]aneN(4))NO]2+ was 10- and 100-fold more active than Bz against amastigotes and trypomastigotes respectively. Further, trans-[RuCl([15]aneN(4))NO]2+ (0.1 mM) induced 100% of trypanocidal activity (trypomastigotes forms) in vitro. Trans-[RuCl([15]aneN(4))NO]2+ induced permanent suppression of parasitaemia and 100% survival in a murine model of acute Chagas` disease. When the drugs were given alone, parasitological cures were confirmed in only 30 and 40% of the animals treated with the NO donor (3.33 mu mol center dot kg-1 center dot day-1) and Bz (385 mu mol center dot kg-1 center dot day-1), respectively, but when given together, 80% of the animals were parasitologically cured. The cured animals showed an absence of myocarditis and a normalisation of cytokine production in the sera. In addition, no in vitro toxicity was observed at the tested doses. Conclusions and implications: These findings indicate that trans-[RuCl([15]aneN(4))NO]2+ is a promising lead compound for the treatment of human Chagas` disease. This article is commented on by Machado et al., pp. 258-259 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00662.x and to view a related paper in this issue by Silva et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00524.x.
Resumo:
To better understand the biochemical mechanisms underlying anisosmotic extracellular regulation in the freshwater Brachyura, we kinetically characterized the V-ATPase from the posterior gills of Dilocarcinus pagei, acclimated for 10 days to salinities up to 21%.. Specific activity was highest in fresh water (26.5 +/- 2.1 U mg(-1)), decreasing in 5 parts per thousand to 21 parts per thousand, attaining 3-fold less at 15 parts per thousand. Apparent affinities for ATP and Mg(2+) respectively increased 3.2- and 2-fold at 10 parts per thousand, suggesting expression of different isoenzymes. In a 240-h time-course study of exposure to 21%., maximum specific activity decreased 2.5- to 4-fold within 1 to 24 h while apparent affinities for ATP and Mg(2+) respectively increased by 12-fold within 24 h and 2.4-fold after 1 h, unchanged thereafter. K(I) for bafilomycin A(1) decreased 150-fold after 1 h, remaining constant up to 120 h. This is the first kinetic analysis of V-ATPase specific activity in crustacean gills during salinity acclimation. Our findings indicate active gill Cl(-) uptake by D. pagei in fresh water, and short- and long-term down-regulation of V-ATPase-driven ion uptake processes during salinity exposure, aiding in comprehension of the biochemical adaptations underpinning the establishment of the Brachyura in fresh water. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The effect of several carbon sources on the production of mycelial-bound beta-glucosidase by Humicola grisea var. thermoidea in submerged fermentation was investigated. Maximum production occurred when cellulose was present in the culture medium, but higher specific activities were achieved with cellobiose or sugarcane bagasse. Xylose or glucose (1%) in the reaction medium stimulated beta-glucosidase activity by about 2-fold in crude extracts from mycelia grown in sugarcane bagasse. The enzyme was purified by ammonium sulfate precipitation, followed by Sephadex G-200 and DEAE-cellulose chromatography, showing a single band in PAGE and SDS-PAGE. The beta-glucosidase had a carbohydrate content of 43% and showed apparent molecular masses of 57 and 60 kDa, as estimated by SDS-PAGE and gel filtration, respectively. The optimal pH and temperature were 6.0 and 50 degrees C, respectively. The purified enzyme was thermostable up to 60 min in water at 55 degrees C and showed half-lives of 7 and 14 min when incubated in the absence or presence of 50 mM glucose, respectively, at 60 degrees C. The enzyme hydrolyzed p-nitrophenyl-beta-D-glucopyranoside, p-nitrophenyl-beta-D-galactopyranoside, p-nitrophenyl-beta-D-fucopyranoside, p-nitrophenyl-beta-D-xylopyranoside, o-nitrophenyl-beta-D-galactopyranoside, lactose, and cellobiose. The best synthetic and natural substrates were p-nitrophenyl-beta-D-fucopyranoside and cellobiose, respectively. Purified enzyme activity was stimulated up to 2-fold by glucose or xylose at concentrations from 25 to 200 mM. The addition of purified or crude beta-glucosidase to a reaction medium containing Trichoderma reesei cellulases increased the saccharification of sugarcane bagasse by about 50%. These findings suggest that H. grisea var. thermoidea beta-glucosidase has a potential for biotechnological applications in the bioconversion of lignocellulosic materials.
Resumo:
A mycelial beta-glucosidase from the thermophilic mold Humicola insolens was purified and biochemically characterized. The enzyme showed carbohydrate content of 21% and apparent molecular mass of 94 kDa, as estimated by gel filtration. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed a single polypeptide band of 55 kDa, suggesting that the native enzyme was a homodimer. Mass spectrometry analysis showed amino acid sequence similarity with a P-glucosidase from Humicola grisea var. thermoidea, with about 22% coverage. Optima of temperature and pH were 60 degrees C and 6.0-6.5, respectively. The enzyme was stable up to I h at 50 degrees C and showed a half-life of approximately 44 min at 55 degrees C. The beta-glucosidase hydrolyzed cellobiose, lactose, p-nitrophenyl-beta-D-glucopyranoside, p-nitrophenyl-beta-D-fucopyranoside, p-nitrophenyl-beta-D-xylopyranoside, p-nitrophenyl-beta-D-galactopyranoside, o-nitrophenyl-beta-D-galactopyranoside, and salicin. Kinetic studies showed that p-nitrophenyl-beta-D-fucopyranoside and cellobiose were the best enzyme substrates. Enzyme activity was stimulated by glucose or xylose at concentrations up to 400 mM, with maximal stimulatory effect (about 2-fold) around 40 mM. The high catalytic efficiency for the natural substrate, good thermal stability, strong stimulation by glucose or xylose, and tolerance to elevated concentrations of these monosaccharides qualify this enzyme for application in the hydrolysis of cellulosic materials. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We have characterized the kinetic properties of ectonucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1) from rat osseous plate membranes. A novel finding of the present study is that the solubilized enzyme shows high- and low-affinity sites for the substrate in contrast with a single substrate site for the membrane-bound enzyme. In addition, contrary to the Michaelian chraracteristics of the membrane-bound enzyme, the site-site interactions after solubilization with 0.5% digitonin plus 0.1% lysolecithin resulted in a less active ectonucleoside triphosphate diphosphohydrolase, showing activity of about 398.3 nmol Pi min(-1) mg(-1). The solubilized enzyme has M(r) of 66-72 kDa, and its catalytic efficiency was significantly increased by magnesium and calcium ions; but the ATP/ADP activity ratio was always < 2.0. Partial purification and kinetic characterization of the rat osseous plate E-NTPDase1 in a solubilized form may lead to a better understanding of a possible function of the enzyme as a modulator of nucleotidase activity or purinergic signaling in matrix vesicle membranes. The simple procedure to obtain the enzyme in a solubilized form may also be attractive for comparative studies of particular features of the active sites from this and other ATPases.
Resumo:
Bovine testicular hyalurphidase (BT-HAase), a tetrameric enzyme responsible for randomly hyaluronic acid, catalytic hydrolysis, was successfully immobilized on Langmuir- Blodgett films prepared with the sodium salt of dihexadacylphosphoric acid, (DHP-Zn(II)) ending with dipalmitoylphosphatidylcholine, DPPC. Data of protein, adsorption at the air-liquid interface by means of pendant drop shipe analysis and interaction of the protein with Langmuir monolayers of DPPC, using a Langmuir trough, have provided information. about the conditions to be used in the protein immobilization. The dynamic surface pressure curves obtained from pendant drop experiments for the enzyme in buffer solutions indicate that, within the range of concentration investigated in this study, the enzyme exhibits the largest induction time at 5 mu g L(-1) attributed to diffusion processes. Nevertheless, it seems that, at this concentration, the most probable conformation should be the one which occupies the smallest area at pi -> 0. The surface pressure (pi) area curves obtained for BT-HAase and mixed DPPC- BT-HAase monolayers reveal the presence of the enzyme at the air-lipid interface up to 45 mN m(-1). Tests of enzymatic activity, using hyaluronic acid, HA, as the substrate, showed an increase of activity compared to the homogeneous medium. A simplified model of protein insertion into the lipid matrix is used to explain the obtained results.
Resumo:
A glycosylphosphatidylinositol (GPI)-anchored enzyme (rat osseous plate alkaline phosphatase-OAP) was studied as monolayer (pure and mixed with lipids) at the air-water interface. Surface pressure and surface potential-area isotherms showed that the enzyme forms a stable monolayer and exhibits a liquid-expanded state even at surface pressure as high as 30 mN m(-1). Isotherms for mixed dimyristoylphosphatidic acid (DMPA)-OAP monolayer showed the absence of a liquid-expanded/liquid-condensed phase transition as observed for pure DMPA monolayer. In both cases, pure or mixed monolayer, the enzyme preserves its native conformation under compression at the air-water interface as observed from in situ p-polarized light Fourier transform-infrared reflection-absorption spectroscopic (FT-IRRAS) measurements. Changes in orientation and conformation of the enzyme due to the presence or absence of DMPA, as well as due to the surface compression, are discussed. (C) 2008 Published by Elsevier Inc.
Resumo:
We evaluate hemolymph osmotic and ionic regulatory abilities and characterize a posterior gill microsomal (Na(+), K(+))-ATPase from the marine swimming crab, Callinectes ornatus, acclimated to 21 parts per thousand or 33 parts per thousand salinity. C ornatus is isosmotic after acclimation to 21 parts per thousand but is hyposmotic at 33 parts per thousand salinity; hemolymph ions do not recover initial levels on acclimation to 21 parts per thousand salinity but are anisoionic compared to ambient concentrations, revealing modest regulatory ability. NH(4)(+) modulates enzyme affinity for K(+), which increases 187-fold in crabs acclimated to 33%. salinity. The (Na(+), K(+))-ATPase redistributes into membrane fractions of different densities, suggesting that altered membrane composition results from salinity acclimation. ATP was hydrolyzed at maximum rates of 182.6 +/- 7.1 nmol Pi min(-1) mg(-1) (21 parts per thousand) and 76.2 +/- 3.5 nmol Pi min(-1) mg(-1) (33 parts per thousand), with little change in K(M) values (approximate to 50 mu mol L(-1)). K(+) together with NH(4)(+) synergistically stimulated activity to maximum rates of approximate to 240 nmol Pi min(-1) mg(-1). K, values for ouabain inhibition (approximate to 110 mu mol L(-1)) decreased to 44.9 +/- 1.0 mu mol L(-1) (21 parts per thousand) and 28.8 +/- 1.3 mu mol L(-1) (33 parts per thousand) in the presence of both K(+) and NH(4)(+). Assays employing various inhibitors suggest the presence of mitochondrial F(0)F(1)- and K(+)- and V-ATPase activities in the gill microsomes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This investigation provides an extensive characterization of the modulation by ATP, Mg(2+), Na(+), K(+) and NH(4)(+) of a gill microsomal (Na(+),K(+))-ATPase from Callinectes danae acclimated to 15 parts per thousand salinity. Novel findings are the lack of high-affinity ATP-binding sites and a 10-fold increase in enzyme affinity for K(+) modulated by NH4+, discussed regarding NH4+ excretion in benthic marine crabs. The (Na(+),K(+))-ATPase hydrolyzed ATP at a maximum rate of 298.7 +/- 16.7 nmol Pi min(-1) mg(-1) and K(0.5) = 174.2 +/- 9.8 mmol L(-1) obeying cooperative kinetics (n(H) = 1.2). Stimulation by sodium (V = 308.9 +/- 15.7 nmol Pi min(-1) mg(-1), K(0.5) = 7.8 +/- 0.4 mmol L(-1)), magnesium (299.2 +/- 14.1 nmol Pi min(-1) mg(-1), K(0.5) = 767.3 +/- 36.1 mmol L(-1)), potassium (300.6 +/- 153 nmol Pi min(-1) mg(-1), K(0.5) = 1.6 +/- 0.08 mmol L(-1)) and ammonium (V = 345.1 +/- 19.0 nmol Pi min(-1) mg(-1), K(0.5) = 6.0 +/- 0.3 mmol L(-1)) ions showed site-site interactions. Ouabain inhibited (Na(+),K(+))-ATPase activity with K(1) = 45.1 +/- 2.5 mu mol L(-1), although affinity for the inhibitor increased (K(1) = 22.7 +/- 1.1 mu mol L(-1)) in 50 mmol L(-1) NH(4)(+). Inhibition assays using ouabain plus oligomycin or ethacrynic acid suggest mitochondrial F(0)F(1)- and K(+)-ATPase activities, respectively. Ammonium and potassium ions synergistically stimulated specific activity up to 72%, inferring that these ions bind to different sites on the enzyme molecule, each modulating stimulation by the other. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
To better comprehend the structural and biochemical underpinnings of ion uptake across the gills of true freshwater crabs, we performed an ultrastructural, ultracytochemical and morphometric investigation, and kinetically characterized the Na(+), K(+)-ATPase, in posterior gill lamellae of Dilocarcinus pagei. Ultrastructurally, the lamellar epithelia are markedly asymmetrical: the thick, mushroom-shaped, proximal ionocytes contain elongate mitochondria (41% cell volume) associated with numerous (approximate to 14 mu m(2) membrane per mu m(3) cytoplasm), deep invaginations that house the Na(+), K(+)-ATPase, revealed ultracytochemically. Their apical surface is amplified (7.5 mu m(2) mu m(-2)) by stubby evaginations whose bases adjoin mitochondria below the subcuticular space. The apical membrane of the thin, distal ionocytes shows few evaginations (1.6 mu m(2) mu m(-2)), each surrounding a mitochondrion, abundant in the cytoplasm below the subcuticular space; basolateral invaginations and mitochondria are few. Fine basal cytoplasmic bridges project across the hemolymph space, penetrating into the thick ionocytes, suggesting ion movement between the epithelia. Microsomal Na(+), K(+)-ATPase specific activity resembles marine crabs but is approximate to 5-fold less than in species from fluctuating salinities, and freshwater shrimps, suggesting ion loss compensation by strategies other than Na(+) uptake. Enzyme apparent K(+) affinity attains 14-fold that of marine crabs, emphasizing the relevance of elevated K(+) affinity to the conquest of fresh water. Western blotting and biphasic ouabain inhibition disclose two alpha-subunit isoforms comprising distinct functional isoenzymes. While enzyme activity is not synergistically stimulated by NH(4)(+) and K(+), each increases affinity for the other, possibly assuring appropriate intracellular K(+) concentrations. These findings reveal specific structural and biochemical adaptations that may have allowed the establishment of the Brachyura in fresh water. J. Exp. Zool. 313A:508-523, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Matricellular proteins play a unique role in the skeleton as regulators of bone remodeling, and the matricellular protein osteonectin (SPARC, BM-40) is the most abundant non-collagenous protein in bone In. the absence of osteonectin, mice develop progressive low turnover osteopenia, particularly affecting trabecular bone. Polymorphisms in a regulatory region of the osteonectin gene are associated with bone mass in a subset of idiopathic osteoporosis patients, and these polymorphisms likely regulate osteonectin expression. Thus it is important to determine how osteonectin gene dosage affects skeletal function. Moreover, intermittent administration of parathyroid hormone (PTH) (1-34) is the only anabolic therapy approved for the treatment of osteoporosis, and it is critical to understand how modulators of bone remodeling, such as osteonectin, affect skeletal response to anabolic agents. In this study, 10 week old female wild type, osteonectin-haploinsufficient, and osteonectin-null mice (C57Bl/6 genetic background) were given 80 mu g/kg body weight/day PTH(1-34) for 4 weeks. Osteonectin gene dosage had a profound effect on bone microarchitecture. The connectivity density of trabecular bone in osteonectin-haploinsufficient mice was substantially decreased compared with that of wild type mice, suggesting compromised mechanical properties. Whereas mice of each genotype had a similar osteoblastic response to PTH treatment, the osteoclastic response was accentuated in osteonectin-haploinsufficient and osteonectin-null mice. Eroded surface and osteoclast number were significantly higher in PTH-treated osteonectin-null mice, as was endosteal area. In vitro studies confirmed that PTH induced the formation of more osteoclast-like cells in marrow from osteonectin-null mice compared with wild type. PTH treated osteonectin-null bone marrow cells expressed more RANKL mRNA compared with wild type. However, the ratio of RANKL:OPG mRNA was somewhat lower in PTH treated osteonectin-null cultures. Increased expression of RANKL in response to PTH could contribute to the accentuated osteoclastic response in osteonectin(-/-) mice, but other mechanisms are also likely to be involved. The molecular mechanisms by which PTH elicits bone anabolic vs. bone catabolic effects remain poorly understood. Our results imply that osteonectin levels may play a role in modulating the balance of bone formation and resorption in response to PTH. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background: This research compared street male sex workers in Santo Andre, Brazil, that reported consistent condom use with those that revealed inconsistent condom use with their clients, concerning personality aspects, impulsiveness, alcohol and drug consumption, depressive symptoms, sociodemographic data and criminal involvement. Methods: Eighty-six male sex workers were evaluated in face-to-face interviews at their place of work. A `snowball` sampling procedure was used to access this hard-to-reach population. Findings: Male sex workers with inconsistent condom use showed greater involvement with criminal activities, higher reward dependence level and more frequent self-report of being HIV-positive. Conclusions: Conceptualisation of male sex workers` psychological characteristics may be required where HIV risk is not only attributed to sex work per se, but to other aspects such as personality-related factors and negative identity.
Resumo:
Eyebrow positions differ in many ways. They vary in shape, thickness, length, and distance between the eyebrows, making the face more or less harmonious. When a large distance exists between the eyebrows and the medial brow is slanting downward, the glabellar area is larger, giving the face an awkward appearance. To correct this deformity, the authors propose using two Z-plasties to allow transposition of flaps in the region of the medial brow. The Z-shaped flap is outlined at the medial third of the brow, in the glabellar region, with the eyebrow centered in the lower portion of the ""Z"" and the hairless skin in the upper portion. The flaps then are transposed and sutured. Transposition of the flaps, lifting the brow flap to the glabellar region, results in horizontal positioning of the medial and central third of the eyebrow. The proposed transpositioning of ""Z"" flaps in this region corrects this type of deformity of the medial and central portions of the eyebrows, with an aesthetically satisfactory result.
Resumo:
Lineage-survival oncogenes are activated by somatic DNA alterations in cancers arising from the cell lineages in which these genes play a role in normal development(1,2). Here we show that a peak of genomic amplification on chromosome 3q26.33 found in squamous cell carcinomas (SCCs) of the lung and esophagus contains the transcription factor gene SOX2, which is mutated in hereditary human esophageal malformations(3), is necessary for normal esophageal squamous development(4), promotes differentiation and proliferation of basal tracheal cells(5) and cooperates in induction of pluripotent stem cells(6-8). SOX2 expression is required for proliferation and anchorage-independent growth of lung and esophageal cell lines, as shown by RNA interference experiments. Furthermore, ectopic expression of SOX2 here cooperated with FOXE1 or FGFR2 to transform immortalized tracheobronchial epithelial cells. SOX2-driven tumors show expression of markers of both squamous differentiation and pluripotency. These characteristics identify SOX2 as a lineage-survival oncogene in lung and esophageal SCC.
Resumo:
Background: The cerebrospinal fluid (CSF) biomarkers amyloid beta (A beta)-42, total-tau (T-tau), and phosphorylated-tau (P-tau) demonstrate good diagnostic accuracy for Alzheimer`s disease (AD). However, there are large variations in biomarker measurements between studies, and between and within laboratories. The Alzheimer`s Association has initiated a global quality control program to estimate and monitor variability of measurements, quantify batch-to-batch assay variations, and identify sources of variability. In this article, we present the results from the first two rounds of the program. Methods: The program is open for laboratories using commercially available kits for A beta, T-tau, or P-tau. CSF samples (aliquots of pooled CSF) are sent for analysis several times a year from the Clinical Neurochemistry Laboratory at the Molndal campus of the University of Gothenburg, Sweden. Each round consists of three quality control samples. Results: Forty laboratories participated. Twenty-six used INNOTEST enzyme-linked immunosorbent assay kits, 14 used Luminex xMAP with the INNO-BIA AlzBio3 kit (both measure A beta-(1-42), P-tau(181P), and T-tau), and 5 used Mesa Scale Discovery with the A beta triplex (A beta N-42, A beta N-40, and A beta N-38) or T-tau kits. The total coefficients of variation between the laboratories were 13% to 36%. Five laboratories analyzed the samples six times on different occasions. Within-laboratory precisions differed considerably between biomarkers within individual laboratories. Conclusions: Measurements of CSF AD biomarkers show large between-laboratory variability, likely caused by factors related to analytical procedures and the analytical kits. Standardization of laboratory procedures and efforts by kit vendors to increase kit performance might lower variability, and will likely increase the usefulness of CSF AD biomarkers. (C) 2011 The Alzheimer`s Association. All rights reserved.