79 resultados para VAR GENE-TRANSCRIPTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecdysteroids regulate many aspects of insect physiology after binding to a heterodimer composed of the nuclear hormone receptor proteins ecdysone receptor (EcR) and ultraspiracle (Use). Several lines of evidence have suggested that the latter also plays important roles in mediating the action of juvenile hormone (JH) and, thus, integrates signaling by the two morphogenetic hormones. By using an RNAi approach, we show here that Us p participates in the mechanism that regulates the progression of pupal development in Apis mellifera, as indicated by the observed pupal developmental delay in usp knocked-down bees. Knock-down experiments also suggest that the expression of regulatory genes such as ftz transcription factor 1 (ftz-f1) and juvenile hormone esterase (jhe) depend on Usp. Vitellogenin (vg), the gene coding the main yolk protein in honeybees, does not seem to be under Usp regulation, thus suggesting that the previously observed induction of vg expression by JH during the last stages of pupal development is mediated by yet unknown transcription factor complexes. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: Necdin activates GNRH gene expression and is fundamental for the development, migration, and axonal extension of murine GNRH neurons. In humans, necdin plays a potential role in the hypogonadotropic hypogonadism phenotype in patients with Prader-Willi syndrome. Aim: To investigate necdin gene (NDN) variants in patients with isolated hypogonadotropic hypogonadism (IHH). Patients and methods: We studied 160 Brazilian patients with IHH, which includes 92 with Kallmann syndrome and 68 with normosmic IHH. Genomic DNA was extracted and the single NDN exon was amplified and sequenced. To measure GNRH transcriptional activity, luciferase reporter plasmids containing GNRH regulatory regions were transiently transfected into GT1-7 cells in the presence and absence of overexpressed wild-type or mutant necdin. Results: A heterozygous variant of necdin, p.V318A, was identified in a 23-year-old male with Kallmann syndrome. The p.V318A was also present in affected aunt and his father and was absent in 100 Brazilian control subjects. Previous FGFR1 gene analysis revealed a missense mutation (p.P366L) in this family. Functional studies revealed a minor difference in the activation of GNRH transcription by mutant protein compared with wild type in that a significant impairment of the necdin protein activity threshold was observed. Conclusion: A rare variant of necdin (p.V318A) was described in a family with Kallmann syndrome associated with a FGFR1 mutation. Familial segregation and in vitro analysis suggested that this non-synonymous variant did not have a direct causative role in the hypogonadism phenotype. NDN mutations are not a frequent cause of congenital IHH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. Among T. cruzi-infected individuals, only a subgroup develops severe chronic Chagas cardiomyopathy (CCC); the majority remain asymptomatic. T. cruzi displays numerous ligands for the Toll-like receptors (TLRs), which are an important component of innate immunity that lead to the transcription of proinflammatory cytokines by nuclear factor-kappa B. Because proinflammatory cytokines play an important role in CCC, we hypothesized that single-nucleotide polymorphisms (SNPs) in the genes that encode proteins in the TLR pathway could explain differential susceptibility to CCC among T. cruzi-infected individuals. Methods. For 169 patients with CCC and 76 T. cruzi-infected, asymptomatic individuals, we analyzed SNPs by use of polymerase chain reaction-restriction fragment length polymorphism analysis for the genes TLR1, TLR2, TLR4, TLR5, TLR9, and MAL/TIRAP, which encodes an adaptor protein. Results. Heterozygous carriers of the MAL/TIRAP variant S180L were more prevalent in the asymptomatic group (24 [32%] of 76 subjects) than in the CCC group (21 [12%] of 169) (chi(2) = 12.6; P = .0004 [adjusted P (P(c)) = .0084]; odds ratio [OR], 0.31 [95% confidence interval {CI}, 0.16-0.60]). Subgroup analysis showed a stronger association when asymptomatic patients were compared with patients who had severe CCC (i.e., patients with left-ventricular ejection fraction <= 40%) (chi(2) = 11.3; P = .0008 [P(c) = .017]; OR, 0.22 [95% CI, 0.09-0.56]) than when asymptomatic patients were compared with patients who had mild CCC (i.e., patients with left-ventricular ejection fraction >40%) (chi(2) = 7.7; P = .005 [P(c) = .11]; OR, 0.33 [95% CI, 0.15-0.73]). Conclusion. T. cruzi-infected individuals who are heterozygous for the MAL/TIRAP S180L variant that leads to a decrease in signal transduction upon ligation of TLR2 or TLR4 to their respective ligand may have a lower risk of developing CCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lima GA, Anhe GF, Giannocco G, Nunes MT, Correa-Giannella ML, Machado UF. Contractile activity per se induces transcriptional activation of SLC2A4 gene in soleus muscle: involvement of MEF2D, HIF-1a, and TR alpha transcriptional factors. Am J Physiol Endocrinol Metab 296: E132-E138, 2009. First published October 28, 2008; doi: 10.1152/ajpendo.90548.2008.-Skeletal muscle is a target tissue for approaches that can improve insulin sensitivity in insulin-resistant states. In muscles, glucose uptake is performed by the GLUT-4 protein, which is encoded by the SLC2A4 gene. SLC2A4 gene expression increases in response to conditions that improve insulin sensitivity, including chronic exercise. However, since chronic exercise improves insulin sensitivity, the increased SLC2A4 gene expression could not be clearly attributed to the muscle contractile activity per se and/or to the improved insulin sensitivity. The present study was designed to investigate the role of contractile activity per se in the regulation of SLC2A4 gene expression as well as in the participation of the transcriptional factors myocyte enhancer factor 2D (MEF2D), hypoxia inducible factor 1a (HIF-1a), and thyroid hormone receptor-alpha (TR alpha). The performed in vitro protocol excluded the interference of metabolic, hormonal, and neural effects. The results showed that, in response to 10 min of electrically induced contraction of soleus muscle, an early 40% increase in GLUT-4 mRNA (30 min) occurred, with a subsequent 65% increase (120 min) in GLUT-4 protein content. EMSA and supershift assays revealed that the stimulus rapidly increased the binding activity of MEF2D, HIF-1a, and TR alpha into the SLC2A4 gene promoter. Furthermore, chromatin immunoprecipitation assay confirmed, in native nucleosome, that contraction induced an approximate fourfold (P < 0.01) increase in MEF2D and HIF-1a-binding activity. In conclusion, muscle contraction per se enhances SLC2A4 gene expression and that involves MEF2D, HIF-1a, and TR alpha transcription factor activation. This finding reinforces the importance of physical activity to improve glycemic homeostasis independently of other additional insulin sensitizer approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Members of the nuclear factor of activated T cell (NFAT) family of transcription factors were originally described in T lymphocytes but later shown to be expressed in several immune and non-immune cell types. NFAT proteins can modulate cellular transformation intrinsically, and NFAT-deficient (NFAT1-/-) mice are indeed more susceptible to transformation than wild-type counterparts. However, the contribution of an NFAT1-/- microenvironment to tumor progression has not been studied. We have addressed this question by inoculating NFAT1-/- mice with B16F10 melanoma cells intravenously, an established model of tumor homing and growth. Surprisingly, NFAT1-/- animals sustained less tumor growth in the lungs after melanoma inoculation than wild-type counterparts. Even though melanoma cells equally colonize NFAT1-/- and wild-type lungs, tumors do not progress in the absence of NFAT1 expression. A massive mononuclear perivascular infiltrate and reduced expression of TGF-beta in the absence of NFAT1 suggested a role for tumor-infiltrating immune cells and the cytokine milieu. However, these processes are independent of an IL-4-induced regulatory tumor microenvironment, since lack of this cytokine does not alter the phenotype in NFAT1-/- animals. Bone marrow chimera experiments meant to differentiate the contributions of stromal and infiltrating cells to tumor progression demonstrated that NFAT1-induced susceptibility to pulmonary tumor growth depends on NFAT1-expressing parenchyma rather than on bone marrow-derived cells. These results suggest an important role for NFAT1 in radio-resistant tumor-associated parenchyma, which is independent of the anti-tumor immune response and Th1 versus Th2 cytokine milieu established by the cancer cells, but able to promote site-specific tumor growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To describe a new FOXL2 gene mutation in a woman with sporadic blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) and hypergonadotropic hypogonadism. Design: Case report. Setting: University medical center. Patient(s): A 28-year-old woman. Intervention(s): Clinical evaluation, hormone assays, gene mutation research. Main Outcome Measure(s): FOXL2 gene mutation. Result(s): The patient with hypergonadotropic hypogonadism was diagnosed with BPES due to a new FOXL2 gene mutation. Conclusion(s): Blepharophimosis-ptosis-epicanthus inversus syndrome is a rare disorder associated with premature ovarian failure (POF). The syndrome is an autosomal dominant trait that causes eyelid malformations and POF in affected women. Mutations in FOXL2 gene, located in chromosome 3, are related to the development of BPES with POF (BPES type I) or without POF (BPES type II). This report demonstrates a previously undescribed de novo mutation in the FOXL2 gene-a thymidine deletion, c. 627delT (g. 864delT)-in a woman with a sporadic case of BPES and POF. This mutation leads to truncated protein production that is related to a BPES type I phenotype. This report shows the importance of family history and genetic analysis in the evaluation of patients with POF and corroborates the relationship between mutations on the FOXL2 gene and ovarian insufficiency. (Fertil Steril (R) 2010; 93: 1006.e3-e6. (C) 2010 by American Society for Reproductive Medicine.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose is to present the studies of RET gene expression and acetylcholinesterase activity in 23 patients operated for Hirschsprung`s disease (HD). The patients underwent either transanal endorectal pull-through or Duhamell`s procedure. Full-thickness intestinal samples from the three different segments (ganglionic, intermediate and aganglionic) were collected. Each tissue sample was divided in two portions, one for AChE histochemical staining and the other for examination of RET mRNA expression level. All patients had an uneventful postoperative recovery. In all patients, the AChE stainings demonstrated the absence of activity in the ganglionic area, the marked increase of positive fibers in the aganglionic area, and little increase of positive fibers in the intermediate area. In the ganglionic and intermediate areas, all patients (100%) showed significant RET gene expression. In the aganglionic area, 18 patients (78.3%) did not present gene expression and the other five patients (21.7%) presented gene expression that was similar to the ganglionic and intermediate areas. The results reinforce the conclusion that the method of AChE staining is effective for the diagnosis of intestinal aganglionosis and confirm the knowledge that genes beyond RET may be implicated in the genesis of sporadic cases of HD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chagas` disease, caused by Trypanosoma cruzi, is an inflammatory disorder leading to chronic Chagas cardiomyopathy (CCC). Only one third of T cruzi-infected individuals progress to CCC while the others are considered asymptomatic (ASY). The human inhibitory kappa B-like gene (KBLINFKBIL1), homologous to the I kappa B family of proteins that regulate the NF kappa B family of transcription factors, is suggested as a putative inhibitor of NFKB. We investigated two functional polymorphisms, -62A/T and -262A/G, in the promoter of IKBL by PCR-RFLP analysis in 169 patients with CCC and 76 ASY. Genotype distributions for both -62A/T and -262A/G differed between the CCC and ASY (X-2 = 7.3; P = 0.025 and X-2 = 6.8; P = 0.03, respectively). Subjects, homozygous for the -62A allele, had three-fold risk of developing CCC compared with those carrying the TT genotype (P = 0.0095; Odds Ratio [OR] = 2.9; [95% CI 1.2-7.3]). Similar trend was observed for the -262A homozygotes (P = 0.005; OR = 2.7 [95% CI 1.3-6.0]. The haplotype -262A -62A was prevalent in patients with CCC (40% versus 24%; OR 2.1 [95% C1 1.4-3.3j; Pc = 0.00 14). The I kappa BL locus itself or another critical gene in this region may confer susceptibility to the development of CCC. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear actin and nuclear myosins have been implicated in the regulation of geneexpression in vertebrate cells. Myosin V is a class of actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-pole alignment and mRNA translocation. In this study, myosin-Va, phosphorylated on a conserved serine in the tail domain (phospho-ser(1650) MVa), was localized to subnuclear compartments. A monoclonal antibody, 9E6, raised against a peptide corresponding to phosphoserine(1650) and flanking regions of the murine myosin Va sequence, was immunoreactive to myosin Va heavy chain in cellular and nuclear extracts of HeLa cells, PC12 cells and B16-F10 melanocytes. Immunofluorescence microscopy with this antibody revealed discrete irregular spots within the nucleoplasm that colocalized with SC35, a splicing factor that earmarks nuclear speckles. Phospho-ser(1650) MVa was not detected in other nuclear compartments, such as condensed chromatin, Cajal bodies, gems and perinucleolar caps. Although nucleoli also were not labeled by 9E6 under normal conditions, inhibition of transcription in HeLa cells by actinomycin D caused the redistribution of phospho-ser(1650) MVa to nucleoli, as well as separating a fraction of phosphoser(1650) MVa from SC35 into near-neighboring particles. These observations indicate a novel role for myosin Va in nuclear compartmentalization and offer a new lead towards the understanding of actomyosin-based gene regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of peripheral tissue antigens (PTAs) in the thymus by medullary thymic epithelial cells (mTECs) is essential for the central self-tolerance in the generation of the T cell repertoire. Due to heterogeneity of autoantigen representation, this phenomenon has been termed promiscuous gene expression (PGE), in which the autoimmune regulator (Aire) gene plays a key role as a transcription factor in part of these genes. Here we used a microarray strategy to access PGE in cultured murine CD80(+) 3.10 mTEC line. Hierarchical clustering of the data allowed observation that PTA genes were differentially expressed being possible to found their respective induced or repressed mRNAs. To further investigate the control of PGE, we tested the hypothesis that genes involved in this phenomenon might also be modulated by transcriptional network. We then reconstructed such network based on the microarray expression data, featuring the guanylate cyclase 2d (Gucy2d) gene as a main node. In such condition, we established 167 positive and negative interactions with downstream PTA genes. Silencing Aire by RNA interference, Gucy2d while down regulated established a larger number (355) of interactions with PTA genes. T- and G-boxes corresponding to AIRE protein binding sites located upstream to ATG codon of Gucy2d supports this effect. These findings provide evidence that Aire plays a role in association with Gucy2d, which is connected to Several PTA genes and establishes a cascade-like transcriptional control of promiscuous gene expression in mTEC cells. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Deficiency of 11 beta-hydroxylase results in the impairment of the last step of cortisol synthesis. In females, the phenotype of this disorder includes different degrees of genital ambiguity and arterial hypertension. Mutations in the CYP11B1 gene are responsible for this disease. Objective: The objective of the study was to screen the CYP11B1 gene for mutations in two unrelated Brazilian females with congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. Design: The coding and intron-exon junction regions of CYP11B1 were totally sequenced. A putative splice mutation was further investigated by minigene transcription. Results: We report two novel CYP11B1 mutations in these Brazilian patients. An Arabian Lebanese descendent female was found to be homozygous for a cytosine insertion at the beginning of exon 8, changing the 404 arginine to proline. It alters the open reading frame, creating a putative truncated protein at 421 residue, which eliminates the domain necessary for the association of heme prosthetic group. A severely virilized female was homozygous for the g. 2791G>A transition in the last position of exon 4. This nucleotide is also part of 5` intron 4 donor splice site consensus sequence. Minigene experiments demonstrated that g. 2791G>A activated an alternative splice site within exon 4, leading to a 45-bp deletion in the transcript. The putative translation of such modified mRNA indicates a truncated protein at residue 280. Conclusions: We describe two novel mutations, g. 4671_4672insC and g. 2791G>A, that drastically affects normal protein structure. These mutations abolish normal enzyme activity, leading to a severe phenotype of congenital adrenal hyperplasia due to 11 beta-hydroxylase deficiency. (J Clin Endocrinol Metab 94: 3481-3485, 2009)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. The relationship of multipotent mesenchymal stromal cells (MSC) with pericytes and fibroblasts has not been established thus far, although they share many markers of primitive marrow stromal cells and the osteogenic, adipogenic, and chondrogenic differentiation potentials. Materials and Methods. We compared MSCs from adult or fetal tissues, MSC differentiated in vitro, fibroblasts and cultures of retinal pericytes obtained either by separation with anti-CD146 or adhesion. The characterizations included morphological, immunophenotypic, gene-expression profile, and differentiation potential. Results. Osteogenic, adipocytic, and chondrocytic differentiation was demonstrated for MSC, retinal perivascular cells, and fibroblasts. Cell morphology and the phenotypes defined by 22 markers were very similar. Analysis of the global gene expression obtained by serial analysis of gene expression for 17 libraries and by reverse transcription polymerase chain reaction of 39 selected genes from 31 different cell cultures, revealed similarities among MSC, retinal perivascular cells, and hepatic stellate cells. Despite this overall similarity, there was a heterogeneous expression of genes related to angiogenesis, in MSC derived from veins, artery, perivascular cells, and fibroblasts. Evaluation of typical pericyte and MSC transcripts, such as NG2, CD146, CD271, and CD140B on CD146 selected perivascular cells and MSC by real-time polymerase chain reaction confirm the relationship between these two cell types. Furthermore, the inverse correlation between fibroblast-specific protein-1 and CD146 transcripts observed on pericytes, MSC, and fibroblasts highlight their potential use as markers of this differentiation pathway. Conclusion. Our results indicate that human MSC and pericytes are similar cells located in the wall of the vasculature, where they function as cell sources for repair and tissue maintenance, whereas fibroblasts are more differentiated cells with more restricted differentiation potential. (C) 2008 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MHC region (6p21) aggregates the major genes that contribute to susceptibility to type 1 diabetes (T1D). Three additional relevant susceptibility regions mapped on chromosomes 1p13 (PTPN22), 2q33 (CTLA-4), and 11p15 (insulin) have also been described by linkage studies. To evaluate the contribution of these susceptibility regions and the chromosomes that house these regions, we performed a large-scale differential gene expression on lymphomononuclear cells of recently diagnosed T1D patients, pinpointing relevant modulated genes clustered in these regions and their respective chromosomes. A total of 4608 cDNAs from the IMAGE library were spotted onto glass slides using robotic technology. Statistical analysis was carried out using the SAM program, and data regarding gene location and biological function were obtained at the SOURCE, NCBI, and FATIGO programs. Three induced genes were observed spanning around the MHC region (6p21-6p23), and seven modulated genes (5 repressed and 2 repressed) were seen spanning around the 6q21-24 region. Additional modulated genes were observed in and around the 1p13, 2q33, and 11p15 regions. Overall, modulated genes in these regions were primarily associated with cellular metabolism, transcription factors and signaling transduction. The differential gene expression characterization may identify new genes potentially involved with diabetes pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Hereditary angioedema is an autosomal dominant disease characterized by episodes of subcutaneous and submucosal edema. It is caused by deficiency of the C1 inhibitor protein, leading to elevated levels of bradykinin. More than 200 mutations in C1 inhibitor gene have been reported. The aim of this study was to analyze clinical features of a large family with an index case of hereditary angioedema and to determine the disease-causing mutation in this family. Methods: Family pedigree was constructed with 275 individuals distributed in five generations. One hundred and sixty-five subjects were interviewed and investigated for mutation at the C1 inhibitor gene. Subjects reporting a history of recurrent episodes of angioedema and/or abdominal pain attacks underwent evaluation for hereditary angioedema. Results: We have identified a novel mutation at the C1 inhibitor gene, c.351delC, which is a single-nucleotide deletion of a cytosine on exon 3, resulting in frameshift with premature stop codon. Sequencing analysis of the hypothetical truncated C1 inhibitor protein allowed us to conclude that, if transcription occurs, this protein has no biological activity. Twenty-eight members of the family fulfilled diagnostic criteria for hereditary angioedema and all of them presented the c.351delC mutation. Variation in clinical presentation and severity of disease was observed among these patients. One hundred and thirty-seven subjects without hereditary angioedema did not have the c.351delC mutation. Conclusion: The present study provides definitive evidence to link a novel genetic mutation to the development of hereditary angioedema in patients from a Brazilian family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat shock proteins are molecular chaperones linked to a myriad of physiological functions in both prokaryotes and eukaryotes. In this study, we show that the Aspergillus nidulans hsp30 (ANID_03555.1), hsp70 (ANID_05129.1), and hsp90 (ANID_08269.1) genes are preferentially expressed in an acidic milieu, whose expression is dependent on the palA (+) background under optimal temperature for fungal growth. Heat shock induction of these three hsp genes showed different patterns in response to extracellular pH changes in the palA(+) background. However, their accumulation upon heating for 2 h was almost unaffected by ambient pH changes in the palA (-) background. The PalA protein is a member of a conserved signaling cascade that is involved in the pH-mediated regulation of gene expression. Moreover, we identified several genes whose expression at pH 5.0 is also dependent on the palA (+) background. These results reveal novel aspects of the heat- and pH-sensing networks of A. nidulans.