146 resultados para Surface science
Resumo:
The high velocity oxygen fuel (HVOF) thermal spray process produces highly wear and/or corrosion resistant coatings. Tungsten carbide with a metallic binder is often used for this purpose. In this work, tungsten carbide coatings containing cobalt or nickel binder were produced by HVOF and characterised by optical and electron microscopy, hardness and a dry sand/rubber wheel abrasion test. The HVOF process produced dense coatings with low porosity levels and high hardness. The wear resistance of the specimens, which were surface treated, increased as the roughness percentage decreased. Tungsten carbide nickel based coating yielded the best wear resistance in the as sprayed condition. However, the wear rate and wear of the two coatings converged to the same values as the number of revolutions increased. Wear behaviour in the ground condition was similar, although the tungsten carbide cobalt based coating yielded better performance with increasing distance travelled during the wear test.
Resumo:
This paper presents results of an experimental investigation carried out to determine the effects of the surface roughness of different materials on nucleate boiling heat transfer of refrigerants R-134a and R-123. Experiments have been performed over cylindrical surfaces of copper, brass and stainless steel. Surfaces have been treated by different methods in order to obtain an average roughness, Ra, varying from 0.03 mu m to 10.5 mu m. Boiling curves at different reduced pressures have been raised as part of the investigation. The obtained results have shown significant effects of the surface material, with brass being the best performing and stainless steel the worst. Polished surfaces seem to present slightly better performance than the sand paper roughened. Boiling on very rough surfaces presents a peculiar behavior characterized by good thermal performance at low heat fluxes, the performance deteriorating at high heat fluxes with respect to smoother surfaces. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
There are currently many types of protective materials for reinforced concrete structures and the influence of these materials in the chloride diffusion coefficient still needs more research. The aim of this paper is to study the efficacy of certain surface treatments (such as hydrophobic agents, acrylic coating, polyurethane coating and double systems) in inhibiting chloride penetration in concrete. The results indicated that all tested surface protection significantly reduced the sorptivity of concrete (reduction rate > 70%). However, only the polyurethane coating was highly effective in reducing the chloride diffusion coefficient (reduction rate of 86%). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Hydrophobic agents are surface protection materials capable of increasing the angle of contact between the water and the concrete surface. For this reason, hydrophobic agents reduce water (in liquid form) penetration in concrete. Therefore, many European construction regulating agencies recommend this treatment in their maintenance policy. Nonetheless, there continues to be a gap in the understanding about which transport mechanisms of the concrete are modified by the hidrophobic agents. The aim of this study was to fill this gap in regards to reinforced concrete structures inserted in a marine environment. To this end, certain tests were used: Two involving permeability mechanism, one determining capillary absorption, and the last, a migration test used to estimate the chloride diffusion coefficient in saturated condition. Results indicated the efficacy of the hydrophobic agents in cases where capillary suction is the mechanism of water penetration (reduced by 2.12 and 7.0 times, depending of the product). However, when the transport mechanism is permeability this product is not advisable. Moreover, it was demonstrated that the chloride diffusion coefficient (in saturated condition) is reduced by the hydrophobic agents, however, the magnitude of this reduction is minor (reduced by 11% and 17%, depending on the product).
Resumo:
The purpose of this paper was to study the main effects of the turning in the superficial integrity of the duplex stainless steel ASTM A890-6A. The tests were conducted on a turning centre with carbide tools and the main entrances variables were: tool material class, feed rate, cutting depth, cutting speed and cutting fluid utilisation. The answers were analysed: microstructural analysis by optical microscopy and x-ray diffraction, cutting forces measurements by a piezoelectric dynamometer, surface roughness, residual stress by x-ray diffraction technique and the microhardness measurements. The results do not show any changes in the microstructural of the material, even when the greater cutting parameters were used. The smaller feed rate (0.1 mm/v), smaller cutting speed (110 m/min) and the greater cutting depth (0.5 mm) provided the smaller values for the tensile residual stress, the smaller surface roughness and the greater microhardness.
Resumo:
The cracking formation during the photodegradation of polypropylene (PP) plates (1 mm thickness), with (PPOx) and without pro-oxidant [PP), has been investigated. The plates were produced by extrusion in an industrial production line and were exposed to ultraviolet radiation in the laboratory for periods of up to 480 hr. The samples were investigated by infrared spectroscopy- FTIR, optical light microscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results showed that the extension of photodegradation process is more intense for PPOx than for PP samples. For both samples, cracks were formed at the surface perpendicularly to the flow-lines. However the cracks frequency was different for both samples and sides of sample. The crack frequency was correlated with chain orientation, A(110); it was shown that lower degrees of orientation resulted in lower crack frequency. POLYM. ENG. SCI., 48:365-372, 2008. (c) 2007 Society of Plastics Engineers.
Resumo:
Alumina ceramics with high in-line transmittance at 0.5-1.0 mm-thickness were prepared with different doping additives by sintering at 1850 degrees C in vacuum for 1-8 h. Depending on the additive contents and sintering variables bi-dimensionally large surface grains, caused by surface evaporation of MgO, had grown parallel to the surface with similar to 100 mu m thickness and lateral sizes up to the millimeter range. The abnormal grain-growth process also resulted in the formation of pores entrapped inside the large surface grains within a narrow zone at 10-20 mu m distance from the surface. The fraction of these pores is thickness-invariant. Scattering factors associated to the pores entrapped inside the bi-dimensionally large surface grains, second-phase particles, grain-boundaries, and microstructural surface defects are derived from the results of in-line transmission (at 600 nm) and are used together with microstructural characteristics to explain the light transmittance in these materials. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Adsorbent materials and composites are quite useful for sensor development. Therefore, the aim of this work is the surface modification of particulates and/or composite formation. The material was produced by plasma polymerization of HMDS (hexamethyldisilazane) in a single step. SEM analysis shows good surface coverage of particulates with a plasma polymerized film formed by several clusters that might increase adsorption. Particles (starch. 5 5 mu m) recovered with HMDS films show good properties for retention of medium-size Organic molecules, such as dye. Thin films formed by a mixture of particles and plasma polymerized thin film HMDS species were obtained in a single step and can be used for retention of organic compounds, in liquid or gaseous phase. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, we have studied the influence of the substrate surface condition on the roughness and the structure of the nanostructured DLC films deposited by High Density Plasma Chemical Vapor Deposition. Four methods were used to modify the silicon wafers surface before starting the deposition processes of the nanostructured DLC films: micro-diamond powder dispersion, micro-graphite powder dispersion, and roughness generation by wet chemical etching and roughness generation by plasma etching. The reference wafer was only submitted to a chemical cleaning. It was possible to see that the final roughness and the sp(3) hybridization degree strongly depend on the substrate surface conditions. The surface roughness was observed by AFM and SEM and the hybridization degree of the DLC films was analyzed by Raman Spectroscopy. In these samples, the final roughness and the sp(3) hybridization quantity depend strongly on the substrate surface condition. Thus, the effects of the substrate surface on the DLC film structure were confirmed. These phenomena can be explained by the fact that the locally higher surface energy and the sharp edges may induce local defects promoting the nanostructured characteristics in the DLC films. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Controlling the surface properties of nanoparticles using ionic dopants prone to be surface segregated has emerged as an interesting tool for obtaining highly selective and sensitive sensors. In this work, the surface segregation of Cd cations on SnO2 nanopowders prepared by the Pechini`s method was studied by infrared spectroscopy, X-ray diffraction, and specific surface area analysis. We observed that the surface chemistry modifications caused by the surface segregation of Cd and the large specific surface area were closely responsible for a rapid and regular electrical response of 5 mol% Cd-doped SnO2 films to 100 ppm propane and NO, diluted in dry air at relatively low temperature (100 degrees C). (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Aim of this work is to investigate the effect of monomers containing either carboxylate (ammonium acrylate) or acrylamide (hydroxymethylacrylamide) functional groups on the surface charging and theological behavior of alumina suspensions. The rheological behavior was investigated by changing the concentrations of dispersant (ammonium polyacrylate) and monomers in the suspensions. The zeta potential of alumina suspensions containing each of the different monomers was measured as a function of dispersant additions. The suspension theological behavior varied significantly depending on the monomer type, which could be explained in terms of repulsive forces, pH changes and additive interactions. (C) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Bovine bone ash is the main raw material for fabrication of bone china, a special kind of porcelain that has visual and mechanical advantages when compared to usual porcelains. The properties of bone china are highly dependent on the characteristics of the bone ash. However, despite a relatively common product, the science behind formulations and accepted fabrication procedures for bone china is not completely understood and deserves attention for future processing optimizations. In this paper, the influence of the preparation steps (firing, milling, and washing of the bones) on the physicochemical properties of bone ash particles was investigated. Bone powders heat-treated at temperatures varying from 700 to 1000 degrees C were washed and milled. The obtained materials were analyzed in terms of particle size distribution, chemical composition, density, specific surface area, FTIR spectroscopy, dynamic electrophoretic mobility, crystalline phases and scanning electron microscopy. The results indicated that bone ash does not significantly change in terms of chemistry and physical features at calcination temperatures above 700 degrees C. After washing in special conditions, one could only observe hydroxyapatite in the diffraction pattern. By FTIR it was observed that carbonate seems to be mainly concentrated on the surface of the powders. Since this compound can influence in the dispersion stability, and consequently in the quality of the final bone china product, and considering optimal washing parameters based on the dynamic electrophoretic mobility results, we describe a procedure for surface cleaning. (c) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The knowledge of the relationship between spatial variability of the surface soil water content (theta) and its mean across a spatial domain (theta(m)) is crucial for hydrological modeling and understanding soil water dynamics at different scales. With the aim to compare the soil moisture dynamics and variability between the two land uses and to explore the relationship between the spatial variability of theta and theta(m), this study analyzed sets of surface theta measurements performed with an impedance soil moisture probe, collected 136 times during a period of one year in two transects covering different land uses, i.e., korshinsk peashrub transect (KPT) and bunge needlegrass transect (BNT), in a watershed of the Loess Plateau, China. Results showed that the temporal pattern of theta behaved similarly for the two land uses, with both relative wetter soils during wet period and relative drier soils during dry period recognized in BNT. Soil moisture tended to be temporally stable among different dates, and more stable patterns could be observed for dates with more similar soil water conditions. The magnitude of the spatial variation of theta in KPT was greater than that in ENT. For both land uses, the standard deviation (SD) of theta in general increased as theta(m) increased, a behavior that could be well described with a natural logarithmic function. Convex relationship of CV and theta(m) and the maximum CV for both land uses (43.5% in KPT and 41.0% in BNT) can, therefore, be ascertained. Geostatistical analysis showed that the range in KPT (9.1 m) was shorter than that in BNT (15.1 m). The nugget effects, the structured variability, hence the total variability increased as theta(m) increased. For both land uses, the spatial dependency in general increased with increasing theta(m). 2011 Elsevier B.V. All rights reserved.
Resumo:
Aluminum toxicity is one of the major soil factors limiting root growth in acidic soils. Because of the increase in organic matter content in the upper few centimeters of soils under no-till systems (NTS), most Al in soil solution may be complexed to dissolved organic C (DOC), thus decreasing its bioavailability. The aim of this study was to evaluate the effects of surface liming on Al speciation in soil solution in Brazilian sites under NTS. Field experiments were performed in two regions with contrasting climates and levels of soil acidity: Rondonopolis, Mato Grosso State, on a Rhodic Haplustox, and Ponta Grossa, Parana State, on a Typic Hapludox. The treatments consisted of a control and three lime rates, surface applied to raise the base saturation to 50, 70, and 90%. Soil solution was obtained at soil water equilibrium (1:1 w/w soil/water ratio). The effects of surface liming on soil chemical attributes and on the composition of the soil solution were dependent on weather conditions, time under NTS, and soil weathering. Most Al in soil solution was complexed to DOC, representing about 70 to 80% of the total Al at pH <5.0, and about 30 to 4096 at pH >5.0. Under pH 5.5, the results were closely correlated with the solubility line for amorphous Al. Organic complexes may control Al(3+) release into soil solution at pH <5.5. Results suggest that in areas under NTS for a long period of time, Al toxicity might decrease due to its complexation to high-molecular-weight organic compounds.
Resumo:
No-till (NT) system with crop rotation is one of the most effective strategies to improve agricultural sustainability in tropical and subtropical regions. To control soil acidity in NT, lime is broadcast on the surface without incorporation. The increase in soil pH due to surface liming may decrease zinc (Zn) availability and its uptake by crops. A field experiment was performed in Parana State, Brazil, on a loamy, kaolinitic, thermic Typic Hapludox to evaluate Zn bioavailability in a NT system after surface liming and re-liming. Dolomitic lime was surface applied on the main plots in July 1993 at the rates of 0, 2, 4, and 6 Mg ha-1. In June 2000, the main plots were divided in two subplots to study of the effect of surface re-liming at the rates of 0 and 3 Mg ha-1. The cropping sequence was soybean [Glycine max (L.) Merrill] (2001-2 and 2002-3), wheat (Triticum aestivum L.) (2003), soybean (2003-4), corn (Zea mays L.) (2004-5), and soybean (2005-6). Soil samples were collected at the following depths: 0-0.05, 0.05-0.10, and 0.10-0.20m, 10 years after surface liming and 3 years after surface re-liming. Soil Zn levels were extracted by four extractants: (i) 0.005molL-1 diethylenetriaminepentaacetic acid (DTPA) + 0.1molL-1 triethanolamine (TEA) + 0.01molL-1 calcium chloride (CaCl2) solution at pH7.3 (DTPA-TEA), (ii) 0.1molL-1 hydrochloric acid (HCl) solution, (iii) Mehlich 1 solution, and (iv) Mehlich 3 solution. Zinc concentrations in leaves and grains of soybean, wheat, and corn were also determined. Soil pH (0.01molL-1 CaCl2 suspension) varied from 4.4 to 6.1, at the 0- to 0.05-m depth, from 4.2 to 5.3 at the 0.05- to 0.10-m depth, and from 4.2 to 4.8 at the 0.10- to 0.20-m depth, after liming and re-liming. Zinc concentrations evaluated by DTPA-TEA, 0.1molL-1 HCl, Mehlich 1, and Mehlich 3 solutions were not changed as a result of lime rate application. Re-liming increased Zn concentrations extracted by 0.1molL-1 HCl at 0-0.05m deep and by DTPA-TEA at 0.05-0.10m deep. Surface-applied lime promoted a decrease in Zn concentrations of the crops, mainly in grains, because of increased soil pH at the surface layers. Regardless of the liming treatments, levels of Zn were sufficient to soybean, wheat, and corn nutrition under NT.