73 resultados para Spinal pathways
Resumo:
Granulocyte-colony stimulating factor (G-CSF) is a current pharmacological approach to increase peripheral neutrophil counts after anti-tumor therapies. Pain is most relevant side effect of G-CSF in healthy volunteers and cancer patients. Therefore, the mechanisms of G-CSF-induced hyperalgesia were investigated focusing on the role of spinal mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated kinase). JNK (Jun N-terminal Kinase) and p38, and PI(3)K (phosphatidylinositol 3-kinase). G-CSF induced dose (30-300 ng/paw)-dependent mechanical hyperalgesia, which was inhibited by local post-treatment with morphine. This effect of morphine was reversed by naloxone (opioid receptor antagonist). Furthermore, G-CSF-induced hyperalgesia was inhibited in a dose-dependent manner by intrathecal pre-treatment with ERK (PD98059), JNK (SB600125), p38 (SB202190) or PI(3)K (wortmanin) inhibitors. The co-treatment with MAP kinase and PI(3)K inhibitors, at doses that were ineffective as single treatment, significantly inhibited G-CSF-induced hyperalgesia. Concluding, in addition to systemic opioids, peripheral opioids as well as spinal treatment with MAP kinases and PI(3)K inhibitors also reduce G-CSF-induced pain. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Aims: Many fundamental pharmacological studies in pain and inflammation have been performed on rats. However, the pharmacological findings were generally not extended to other species in order to increase their predictive therapeutic value. We studied acute and chronic inflammatory nociceptive sensitisation of mouse hind paws by prostaglandin E(2) (PGE(2)) or dopamine (DA), as previously described in rats. We also investigated the participation of the signalling pathways in acute and persistent sensitisation. Main methods: Mechanical sensitisation (hypernociception) induced by intraplantar administrations of PGE(2) or DA was evaluated with an electronic pressure meter. The signalling pathways were pharmacologically investigated with the pre-administration of adenylyl cyclase (AC), cAMP-dependent protein kinase (PKA), protein kinase C epsilon (PKC epsilon), and the extracellular signal-related kinase (ERK) inhibitors. Key findings: Single or 14 days of successive intraplantar injections of PGE(2) or DA-induced acute and persistent hypernociception (lasting for more than 30 days), respectively. The involvement of AC, PKA or PKC epsilon was observed in the acute hypernociception induced by PGE(2), while PKA or PKC epsilon were continuously activated during the period of persistent hypernociception. The acute hypernociception induced by DA involves activation of ERK, PKC epsilon, AC or PKA, while persistent hypernociception implicated ERK activation, but not PKA, PKC epsilon or AC. Significance: In mice, acute and persistent paw sensitisation involves the different activation of kinases, as previously described for rats. This study opens the possibility of comparing pharmacological approaches in both species to further understand acute and chronic inflammatory sensitisation, and possibly associated genetic manipulations. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The modulatory effect of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on sympathetic preganglionic neurons still deserves further investigation. The present study was designed to examine the role of the spinal cord NO/cGMP pathway in controlling mean arterial pressure and heart rate. We observed that intrathecal administration of the NO synthase inhibitor N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) causes an increase in mean arterial pressure but does not affect heart rate. Intrathecal administration of the soluble guanylyl cyclase inhibitor 1H-[1,2,4] Oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) does not change mean arterial pressure and heart rate. The precursor for NO synthesis, L-arginine, reduces both mean arterial pressure and heart rate while administration of ODQ before L-arginine impaired decreases in mean arterial pressure and heart rate. Administration of the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) after L-NAME does not affect increases in mean arterial pressure promoted by NO synthase inhibition. Although the hypotensive and bradycardic responses induced by intrathecal administration of L-arginine depend on cGMP, our results indicate that NO acts to tonically inhibit SPNs, independent of either cGMP or NMDA receptors.
Resumo:
Modulation of salt appetite involves interactions between the circumventricular organs (CVOs) receptive areas and inhibitory hindbrain serotonergic circuits. Recent studies provide support to the idea that the serotonin action in the lateral parabrachial nucleus (LPBN) plays an important inhibitory role in the modulation of sodium appetite. The aim of the present work was to identify the specific groups of neurons projecting to the LPBN that are activated in the course of sodium appetite regulation, and to analyze the associated endocrine response, specifically oxytocin (OT) and atrial natriuretic peptide (ANP) plasma release, since both hormones have been implicated in the regulatory response to fluid reestablishment. For this purpose we combined the detection of a retrograde transported dye, Fluorogold (FG) injected into the LPBN with the analysis of the Fos immunocytochemistry brain pattern after sodium intake induced by sodium depletion. We analyzed the Fos-FG immunoreactivity after sodium ingestion induced by peritoneal dialysis (PD). We also determined OT and ANP plasma concentration by radioimmunoassay (RIE) before and after sodium intake stimulated by PD. The present study identifies specific groups of neurons along the paraventricular nucleus, central extended amygdala, insular cortex, dorsal raphe nucleus, nucleus of the solitary tract and the CVOs that are activated during the modulation of sodium appetite and have direct connections with the LPBN. It also shows that OT and ANP are released during the course of sodium satiety and fluid reestablishment. The result of this brain network activity may enable appropriate responses that re-establish the body fluid balance after induced sodium consumption. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Uchoa ET, Sabino HA, Ruginsk SG, Antunes-Rodrigues J, Elias LL. Hypophagia induced by glucocorticoid deficiency is associated with an increased activation of satiety-related responses. J Appl Physiol 106: 596-604, 2009. First published November 20, 2008; doi: 10.1152/japplphysiol.90865.2008.-Glucocorticoids have major effects on food intake, demonstrated by the decrease of food intake following adrenalectomy. Satiety signals are relayed to the nucleus of the solitary tract (NTS), which has reciprocal projections with the arcuate nucleus (ARC) and paraventricular nucleus (PVN) of the hypothalamus. We evaluated the effects of glucocorticoids on the activation of hypothalamic and NTS neurons induced by food intake in rats subjected to adrenalectomy (ADX) or sham surgery 7 days before the experiments. One-half of ADX animals received corticosterone (ADX + B) in the drinking water (B: 25 mg/l). Fos/tyrosine hydroxylase (TH), Fos/corticotrophin-releasing factor (CRF) and Fos immunoreactivity were assessed in the NTS, PVN, and ARC, respectively. Food intake and body weight were reduced in the ADX group compared with sham and ADX + B groups. Fos and Fos/TH in the NTS, Fos, and Fos/CRF immunoreactive neurons in the PVN and Fos in the ARC were increased after refeeding, with higher number in the ADX group, compared with sham and ADX + B groups. CCK administration showed no hypophagic effect on ADX group despite a similar increase of Fos/TH immunoreactive neurons in the NTS compared with sham and ADX + B groups, suggesting that CCK alone cannot further increase the anorexigenic effect induced by glucocorticoid deficiency. The present data indicate that glucocorticoid withdrawal reduced food intake, which was associated with higher activation of ARC, CRF neurons of the PVN, and catecholaminergic neurons of the NTS. In the absence of glucocorticoids, satiety signals elicited during a meal lead to an augmented activation of brain stem and hypothalamic pathways.
Resumo:
Background: Spinal muscular atrophy is a common autosomal recessive neuromuscular disorder caused by mutations in the SMN1 gene. Identification of spinal muscular atrophy carriers has important implications for individuals with a family history of the disorder and for genetic counseling. The aim of this study was to determine the frequency of carriers in a sample of the nonconsanguineous Brazilian population by denaturing high-performance liquid chromatography (DHPLC). Methods: To validate the method, we initially determined the relative quantification of DHPLC in 28 affected patients (DHPLC values: 0.00) and 65 parents (DHPLC values: 0.49-0.69). Following quantification, we studied 150 unrelated nonconsanguineous healthy individuals from the general population. Results: Four of the 150 healthy individuals tested (with no family history of a neuromuscular disorder) presented a DHPLC value in the range of heterozygous carriers (0.6-0.68). Conclusions: Based on these results, we estimated there is a carrier frequency of 2.7% in the nonconsanguineous Brazilian population, which is very similar to other areas of the world where consanguineous marriage is not common. This should be considered in the process of genetic counseling and risk calculations. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
The vesicle-associated membrane protein/synaptobrevin-associated membrane protein B (VAPB) Pro56Ser Mutation has been identified in Brazilian families showing various motor neuron syndromes. However, the neurophysiological characteristics of these patients have not been detailed, and some questions Still need to be solved, such as the possible presence of myotonia and the origin of the abdominal protrusion seen in most patients. The eventual finding of suggestive electrophysiological characteristics would be helpful not only for clinical diagnosis but also to selection of the appropriate DNA test. To clarify these questions we carried out sensory and motor conduction Studies, including symphatetic skin response, and needle examination in six genetically proven affected members. The electromyographic findings were those of a slowly progressive motor neuron disorder. Topographically, the abdominal muscles were severely affected, but the facial and laryngeal muscles were preserved or very mildly involved. Sensory conduction studies and sympathetic Skin responses were normal. No myotonic discharge was recorded. These findings are indistinguishable from those of other motor neuron disorders, although the predominant involvement of the proximal limbs and of the abdominal muscles may be of some help in the appropriate clinical setting.
Resumo:
Urinary bladder cancer is the fourth most common malignancy in the Western world. Transitional cell carcinoma (TCC) is the most common subtype, accounting for about 90% of all bladder cancers. The TP53 gene plays an essential role in the regulation of the cell cycle and apoptosis and therefore contributes to cellular transformation and malignancy; however, little is known about the differential gene expression patterns in human tumors that present with the wild-type or mutated TP53 gene. Therefore, because gene profiling can provide new insights into the molecular biology of bladder cancer, the present study aimed to compare the molecular profiles of bladder cancer cell lines with different TP53 alleles, including the wild type (RT4) and two mutants (5637, with mutations in codons 280 and 72; and T24, a TP53 allele encoding an in-frame deletion of tyrosine 126). Unsupervised hierarchical clustering and gene networks were constructed based on data generated by cDNA microarrays using mRNA from the three cell lines. Differentially expressed genes related to the cell cycle, cell division, cell death, and cell proliferation were observed in the three cell lines. However, the cDNA microarray data did not cluster cell lines based on their TP53 allele. The gene profiles of the RT4 cells were more similar to those of T24 than to those of the 5637 cells. While the deregulation of both the cell cycle and the apoptotic pathways was particularly related to TCC, these alterations were not associated with the TP53 status.
Resumo:
P>Cholinergic agonists and acetylcholinesterase inhibitors, such as neostigmine, produce a muscarinic receptor-mediated antinociception in several animal species that depends on activation of spinal cholinergic neurons. However, neostigmine causes antinociception in sheep only in the early, and not late, postoperative period. In the present study, a model of postoperative pain was used to determine the antinociceptive effects of bethanechol (a muscarinic agonist) and neostigmine administered intrathecally 2, 24 or 48 h after a plantar incision in a rat hind paw. Changes in the threshold to punctate mechanical stimuli were evaluated using an automated electronic von Frey apparatus. Mechanical hyperalgesia was obtained following plantar incision, the effect being stronger during the immediate (2 h) than the late post-surgical period. Bethanechol (15-90 mu g/5 mu L) or neostigmine (1-3 mu g/5 mu L) reduced incision-induced mechanical hyperalgesia, the effects of both drugs being more intense during the immediate (2 h) than the late post-surgical period. The ED(50) for bethanechol injected at 2, 24 and 48 h was 5.6, 51.9 and 82.5 mu g/5 mu L, respectively. The corresponding ED(50) for neostigmine was 1.62, 3.02 and 3.8 mu g/5 mu L, respectively. The decline in the antinociceptive potency of neostigmine with postoperative time is interpreted as resulting from a reduction in pain-induced activation of acetylcholine-releasing descending pathways. However, the similar behaviour of bethanechol in the same model points to an additional mechanism involving intrinsic changes in spinal muscarinic receptors.
Resumo:
The aim of the present study was to investigate the role of the spinal cord heme oxygenase (HO)-carbon monoxide (CO)-soluble guanylate cyclase (sGC)-cGMP pathway in nociceptive response of rats to the formalin experimental nociceptive model. Animals were handled and adapted to the experimental environment for a few days before the formalin test was applied. For the formalin test 50 mu l of a 1% formalin solution was injected subcutaneously in the dorsal surface of the right hind paw. Following injections, animals were observed for I h and flinching behavior was measured as the nociceptive response. Thirty min before the test, rats were pretreated with intrathecal injections with the HO inhibitor, zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG) or heme-lysinate, which is known to induce the HO pathway. Control animals were treated with vehicles. We observed a significant increase in nociceptive response of rats treated with ZnDPBG, and a drastic reduction of flinching nociceptive behavioral response in the heme-lysinate treated animals. Furthermore, the HO pathway seems to act via cGMP, since methylene blue (a sGC inhibitor) prevented the reduction of flinching nociceptive behavioral response caused by heme-lysinate. These findings strongly indicate that the HO pathway plays a spinal antinociceptive role during the formalin test, acting via cGMP. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Spinal cord injury (SCI) causes motor and sensory deficits that impair functional performance, and significantly impacts life expectancy and quality. Animal models provide a good opportunity to test therapeutic strategies in vivo. C57BL/6 mice were subjected to laminectomy at T9 and compression with a vascular clip (30 g force, 1 min). Two groups were analyzed: injured group (SCI, n = 33) and laminectomy only (Sham, n = 15). Locomotor behavior (Basso mouse scale-BMS and global mobility) was assessed weekly. Morphological analyses were performed by LM and EM. The Sham group did not show any morphofunctional alteration. All SCI animals showed flaccid paralysis 24 h after injury. with subsequent improvement. The BMS score of the SCI group improved until the intermediate phase (2.037 +/- 1.198): the Sham animals maintained the highest BMS score (8.981 +/- 0.056). p < 0.001 during the entire time. The locomotor speed was slower in the SCI animals (5.581 +/- 0.871) than in the Sham animals (15.80 +/- 1.166), p < 0.001. Morphological analysis of the SCI group showed, in the acute phase, edema, hemorrhage, multiple cavities, fiber degeneration, cell death and demyelination. In the chronic phase we observed glial scarring, neuron death, and remyelination of spared axons by oligodendrocytes and Schwann cells. In conclusion, we established a simple, reliable, and inexpensive clip compression model in mice, with functional and morphological reproducibility and good validity. The availability of producing reliable injuries with appropriate outcome measures represents great potential for studies involving cellular mechanisms of primary injury and repair after traumatic SCI. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nitric oxide synthase (NOS) has been reported to be involved with both bone healing and bone metabolism. The aim of this study was to test the null hypothesis that there is no correlation between new bone formation during mandibular distraction osteogenesis and NOS expression in the trigeminal ganglion of rats. Newly formed tissue during distraction osteogenesis and trigeminal NOS expression measured by the NADPH-diaphorase (NADPH-d) reaction were evaluated in 72 male Wistar rats by histomorphometric and histochemical methods. In animals submitted to 0.5 mm/day distraction osteogenesis, the percentage of bone tissue was higher in the basal area of the mandibles compared with the center and significantly increased through the experimental periods (P < 0.05). At the sixth postoperative week, the difference in bone formation between the continuous and acute distraction osteogenesis groups was the highest. Significant correlation between new bone formation by distraction osteogenesis and NADPH-d-reactive neurons was found, varying according to neuronal cell size (r = -0.6, P = 0.005, small cells strongly stained; r = 0.5, P = 0.018, large cells moderately stained). The results suggest that NOS may play a role in the bone healing process via neurogenic pathways, and the phenomenon seems to be neuronal cell morphotype-dependent. Further studies are now warranted to investigate the mechanistic link between the expression of trigeminal NOS and mandibular new bone formation by distraction osteogenesis.
Resumo:
We investigated whether variants in major candidate genes for food intake and body weight regulation contribute to obesity-related traits under a multilocus perspective. We studied 375 Brazilian subjects from partially isolated African-derived populations (quilombos). Seven variants displaying conflicting results in previous reports and supposedly implicated in the susceptibility of obesity-related phenotypes were investigated: beta(2)-adrenergic receptor (ADRB2) (Arg16Gly), insulin induced gene 2 (INSIG2) (rs7566605), leptin (LEP) (A19G), LEP receptor (LEPR) (Gln223Arg), perilipin (PLIN) (6209T > C), peroxisome proliferator-activated receptor-gamma (PPARG) (Pro12Ala), and resistin (RETN) (-420C > G). Regression models as well as generalized multifactor dimensionality reduction (GMDR) were employed to test the contribution of individual effects and higher-order interactions to BMI and waist-hip ratio (WHR) variation and risk of overweight/obesity. The best multilocus association signal identified in the quilombos was further examined in an independent sample of 334 Brazilian subjects of European ancestry. In quilombos, only the PPARG polymorphism displayed significant individual effects (WHR variation, P = 0.028). No association was observed either with the risk of overweight/obesity (BMI >= 25 kg/m(2)), risk of obesity alone (BMI >= 30 kg/m(2)) or BMI variation. However, GMDR analyses revealed an interaction between the LEPR and ADRB2 polymorphisms (P = 0.009) as well as a third-order effect involving the latter two variants plus INSIG2 (P = 0.034) with overweight/obesity. Assessment of the LEPR-ADRB2 interaction in the second sample indicated a marginally significant association (P = 0.0724), which was further verified to be limited to men (P = 0.0118). Together, our findings suggest evidence for a two-locus interaction between the LEPR Gln223Arg and ADRB2 Arg16Gly variants in the risk of overweight/obesity, and highlight further the importance of multilocus effects in the genetic component of obesity.
Resumo:
Behavioral consequences of convulsive episodes are well documented, but less attention was paid to changes that occur in response to subconvulsant doses of drugs. We investigated short- and long-term effects of a single systemic injection of a subconvulsant dose of pilocarpine on the behavior of rats as evaluated in the elevated plus maze. Pilocarpine induced an anxiogenic-like profile 24 h later, and this effect persisted for up to 3 months (% of time spent on open arms at 24 h, control = 35.47 +/- 3.23; pilocarpine 150 = 8.2 +/- 2.6; 3 months, control = 31.9 +/- 5.5; pilocarpine 150 = 9.3 +/- 4.9). Temporary inactivation of fimbria-fornix with lidocaine 4% promoted an anxiolytic-like effect per se, suggesting a tonic control of this pathway on the modulation of anxiety-related behaviors. Lidocaine also reduced the anxiogenic-like profile of animals tested 1 month after pilocarpine treatment (% of time spent on open arms, saline + phosphate-buffered saline (PBS) = 31.7 + 3.7; saline + lidocaine = 54.4 + 4.7; pilocarpine + PBS = 10.3 + 4.1; pilocarpine + lidocaine = 40.1 + 9.1). To determine whether the anxiogenic-like effect was mediated by septal region or by direct hippocampal projections to the diencephalon, the neural transmission of post-commissural fornix was blocked, and a similar reduction in the anxiogenic-like effect of pilocarpine was observed. Our findings suggest that a single systemic injection of pilocarpine may induce long-lasting anxiogenic-like behavior in rats, an effect that appears to be mediated, in part, through a direct path from hippocampus to medial hypothalamic sites involved in fear responses.
Resumo:
There is increasing evidence that spinal glial cells play an important role in chronic pain states. However, so far no data on the role of microglia in muscle pain are available. The aim of the present study was to investigate the involvement of spinal microglial cells in chronic muscle pain. In a rat model of chronic muscle inflammation (injection of complete Freunds adjuvant into the gastrocnemius-soleus muscle) alterations of microglia were visualized with quantitative OX-42 immunohistochemistry in the dorsal horn of the segments L4 and L5 12 days after induction of inflammation. In behavioural experiments the influence of chronic intrathecally applied minocycline - a specific microglia inhibitor - or an antibody against tumour necrosis factor-alpha (TNF-alpha: a cytokine released from microglia) on pain-related behaviour was investigated after 1, 3, 6, and 12 days. The immunhistochemical data show that in the deep laminae of the spinal dorsal horn microglial cells reacted with morphological changes to the muscle inflammation. Following inflammation, the mean boundary length surrounding the OX-42 immunostained area was significantly shorter. This indicates that microglial cells were activated by the myositis and withdrew their processes. Chronic intrathecal administration of minocycline or anti TNF-alpha with an osmotic mini-pump largely normalised the inflammation-induced changes in spontaneous exploratory behaviour and attenuated the hypersensitivity to mechanical stimulation. Both the immunohistochemical and behavioural data show that spinal microglial cells are involved in nociceptive processes in the cause of a chronic muscle inflammation. (C) 2008 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.