99 resultados para Soil-seed
Resumo:
Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO(3)(-)-N in soil and nitrate (NO(3)(-)) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs(804-1622 kg N ha(-1)) greater than exported N (463-597 kg N ha(-1)). Hence, throughout the irrigation period, high NO(3)(-) concentrations (up to 388 mg L(-1) at T200) and DOC (up to 142 mg L(-1) at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Long-term vegetation restoration carried out on the slopes of the Loess Plateau of China employed different spatial and temporal land-use patterns but very little is known about the effects of these patterns on soil water-content variability. For this study the small Donggou catchment was selected to investigate soil water-content distributions for three spatial scales, including the entire catchment area, sampling transects, and land-use systems. Gravimetric soil water contents were determined incrementally to a soil depth of 1.20 m, on 10 occasions from April to October, 2007, at approximately 20-day intervals. Results indicated that soil water contents were affected by the six land-use types, resulting in four distinct patterns of vertical distribution of soil moisture (uniform, increasing, decreasing, and fluctuating with soil depth). The soil water content and its variation were also influenced in a complex manner by five land-use patterns distributed along transects following the gradients of five similar slopes. These patterns with contrasting hydrological responses in different components, such as forage land (alfalfa)-cropland-shrubland or shrubland-grassland (bunge needlegrass)-cropland-grassland, showed the highest soil water-content variability. Soil water at the catchment scale exhibited a moderate variability for each measurement date, and the variability of soil water content decreased exponentially with increasing soil water content. The minimum sample size for accurate data for use in a hydrological model for the catchment, for example, required many more samples for drier (69) than for wet (10) conditions. To enhance erosion and runoff control, this study suggested two strategies for land management: (i) to create a mosaic pattern by land-use arrangement that located units with higher infiltration capacities downslope from those with lower soil infiltrabilities; and (ii) raising the soil-infiltration capacity of units within the spatial mosaic pattern where possible.
Resumo:
The knowledge of soil water storage (SWS) of soil profiles is crucial for the adoption of vegetation restoration practices. With the aim of identifying representative sites to obtain the mean SWS of a watershed, a time stability analysis of neutron probe evaluations of SWS was performed by the means of relative differences and Spearman rank correlation coefficients. At the same time, the effects of different neutron probe calibration procedures were explored on time stability analysis. mean SWS estimation. and preservation of the spatial variability of SWS. The selected watershed, with deep gullies and undulating slopes which cover an area of 20 ha, is characterized by an Ust-Sandiic Entisol and an Aeolian sandy soil. The dominant vegetation species are bunge needlegrass (Stipa bungeana Trim) and korshinsk peashrub (Carugano Korshinskii kom.). From June 11, 2007 to July 23,2008, SWS of the top1 m soil layer was evaluated for 20 dates, based on neutron probe data of 12 sampling sites. Three calibration procedures were employed: type 1, most complete, with each site having its own linear calibration equation (TrE); type II. with TrE equations extended over the whole field: and type III, with one single linear calibration curve for the whole field (UnE) and also correcting its intercept based on site specific relative difference analysis (RdE) and on linear fitting of data (RcE), both maintaining the same slope. A strong time stability of SWS estimated by TrE equations was identified. Soil particle size and soil organic matter content were recognized as the influencing factors for spatial variability of SWS. Land use influenced neither the spatial variability nor the time stability of SWS. Time stability analysis identified one site to represent the mean SWS of the whole watershed with mean absolute percentage errors of less than 10%, therefore. this site can be used as a predictor for the mean SWS of the watershed. Some equations of type II were found to be unsatisfactory to yield reliable mean SWS values or in preserving the associated soil spatial variability. Hence, it is recommended to be cautious in extending calibration equations to other sites since they might not consider the field variability. For the equations with corrected intercept (type III), which consider the spatial variability of calibration in a different way in relation to TrE, it was found that they can yield satisfactory means and standard deviation of SWS, except for the RdE equations, which largely leveled off the SWS values in the watershed. Correlation analysis showed that the neutron probe calibration was linked to soil bulk density and to organic matter content. Therefore, spatial variability of soil properties should be taken into account during the process of neutron probe calibration. This study provides useful information on the mean SWS observation with a time stable site and on distinct neutron probe calibration procedures, and it should be extended to soil water management studies with neutron probes, e.g., the process of vegetation restoration in wider area and soil types of the Loess Plateau in China. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In greenhouse potato cultivation, mineral nutrition is one of the main factors contributing to high yields and better product quality. Knowledge about the amount of nutrients accumulated in the plants at each growing phase provides important information that helps the establishment of a more balanced fertilizer application. The objective of this research was to determine the time course of macronutrients uptake and accumulation in potato plants for seed-tuber production, grown in nutrient solution. The experiment was carried out in a greenhouse, using in vitro material from the pre-basic category of the `Atlantic` variety. The plants were collected weekly from 14 days after transplanting (DAT) until 70 DAT The experimental design was a completely randomized block with 9 treatments to sampling times and four replicates. The highest nutrient requirement in the plant shoot occurred at the periods between 28 and 56 DAT while in the tubers it was after 49 DAT The maximum accumulation sequence of macronutrients was K > N > S > Ca > P > Mg.
Resumo:
The knowledge of the relationship between spatial variability of the surface soil water content (theta) and its mean across a spatial domain (theta(m)) is crucial for hydrological modeling and understanding soil water dynamics at different scales. With the aim to compare the soil moisture dynamics and variability between the two land uses and to explore the relationship between the spatial variability of theta and theta(m), this study analyzed sets of surface theta measurements performed with an impedance soil moisture probe, collected 136 times during a period of one year in two transects covering different land uses, i.e., korshinsk peashrub transect (KPT) and bunge needlegrass transect (BNT), in a watershed of the Loess Plateau, China. Results showed that the temporal pattern of theta behaved similarly for the two land uses, with both relative wetter soils during wet period and relative drier soils during dry period recognized in BNT. Soil moisture tended to be temporally stable among different dates, and more stable patterns could be observed for dates with more similar soil water conditions. The magnitude of the spatial variation of theta in KPT was greater than that in ENT. For both land uses, the standard deviation (SD) of theta in general increased as theta(m) increased, a behavior that could be well described with a natural logarithmic function. Convex relationship of CV and theta(m) and the maximum CV for both land uses (43.5% in KPT and 41.0% in BNT) can, therefore, be ascertained. Geostatistical analysis showed that the range in KPT (9.1 m) was shorter than that in BNT (15.1 m). The nugget effects, the structured variability, hence the total variability increased as theta(m) increased. For both land uses, the spatial dependency in general increased with increasing theta(m). 2011 Elsevier B.V. All rights reserved.
Resumo:
Some Eucalyptus species are widely used as a plantation crop in tropical and subtropical regions. One reason for this is the diversity of end uses, but the main reason is the high level of wood production obtained from commercial plantings. With the advancement of biotechnology it will be possible to expand the geographical area in which eucalypts can be used as commercial plantation crops, especially in regions with current climatic restrictions. Despite the popularity of eucalypts and their increasing range, questions still exist, in both traditional planting areas and in the new regions: Can eucalypts invade areas of native vegetation, causing damage to natural ecosystems biodiversity? The objective of this study it was to assess whether eucalypts can invade native vegetation fragments in proximity to commercial stands, and what factors promote this invasive growth. Thus, three experiments were established in forest fragments located in three different regions of Brazil. Each experiment was composed of 40 plots (1 m(2) each one), 20 plots located at the border between the forest fragment and eucalypts plantation, and 20 plots in the interior of the forest fragments. In each experimental site, the plots were paired by two soil exposure conditions, 10 plots in natural conditions and 10 plots with soil exposure (no plant and no litter). During the rainy season, 2 g of eucalypts seeds were sown in each plot, including Eucalyptus grandis or a hybrid of E. urophylla x E. grandis, the most common commercial eucalypt species planted in the three region. At 15, 30, 45, 90, 180, 270 and 360 days after sowing, we assessed the number of seedlings of eucalypts and the number of seedlings of native species resulting from natural regeneration. Fifteen days after sowing, the greatest number of eucalypts seedlings (37 m(-2)) was observed in the plots with lower luminosity and exposed soil. Also, for native species, it was observed that exposed soil improved natural germination reaching the highest number of 163 seedlings per square meter. Site and soil exposure were the factors that have the greatest influence on seed germination of both eucalypt and native species. However, 270 days after sowing, eucalypt seedlings were not observed at any of the three experimental sites. The result shows the inability of eucalypts to adapt to condition outside of their natural range. However, native species demonstrated their strong capacity for natural regeneration in forest fragments under the same conditions where eucalypts were seeded. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Genetic variation and environmental heterogeneity fundamentally shape the interactions between plants of the same species. According to the resource partitioning hypothesis, competition between neighbors intensifies as their similarity increases. Such competition may change in response to increasing supplies of limiting resources. We tested the resource partitioning hypothesis in stands of genetically identical (clone-origin) and genetically diverse (seed-origin) Eucalyptus trees with different water and nutrient supplies, using individual-based tree growth models. We found that genetic variation greatly reduced competitive interactions between neighboring trees, supporting the resource partitioning hypothesis. The importance of genetic variation for Eucalyptus growth patterns depended strongly on local stand structure and focal tree size. This suggests that spatial and temporal variation in the strength of species interactions leads to reversals in the growth rank of seed-origin and clone-origin trees. This study is one of the first to experimentally test the resource partitioning hypothesis for intergenotypic vs. intragenotypic interactions in trees. We provide evidence that variation at the level of genes, and not just species, is functionally important for driving individual and community-level processes in forested ecosystems.
Resumo:
Eucalyptus is the dominant and most productive planted forest in Brazil, covering around 3.4 million ha for the production of charcoal, pulp, sawtimber, timber plates, wood foils, plywood and for building purposes. At the early establishment of the forest plantations, during the second half of the 1960s, the eucalypt yield was 10 m(3) ha(-1) y(-1). Now, as a result of investments in research and technology, the average productivity is 38 m3 ha(-1) y(-1). The productivity restrictions are related to the following environmental factors, in order of importance: water deficits > nutrient deficiency > soil depth and strength. The clonal forests have been fundamental in sites with larger water and nutrient restrictions, where they out-perform those established from traditional seed-based planting stock. When the environmental limitations are small the productivities of plantations based on clones or seeds appear to be similar. In the long term there are risks to sustainability, because of the low fertility and low reserves of primary minerals in the soils, which are, commonly, loamy and clayey oxisols and ultisols. Usually, a decline of soil quality is caused by management that does not conserve soil and site resources, damages soil physical and chemical characteristics, and insufficient or unbalanced fertiliser management. The problem is more serious when fast-growing genotypes are planted, which have a high nutrient demand and uptake capacity, and therefore high nutrient output through harvesting. The need to mobilise less soil by providing more cover and protection, reduce the nutrient and organic matter losses, preserve crucial physical properties as permeability ( root growth, infiltration and aeration), improve weed control and reduce costs has led to a progressive increase in the use of minimum cultivation practices during the last 20 years, which has been accepted as a good alternative to keep or increase site quality in the long term. In this paper we provide a synthesis and critical appraisal of the research results and practical implications of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations arising from the Brazilian context.
Resumo:
This study aimed to evaluate adult emergence and duration of the pupal stage of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and emergence of the fruit fly parasitoid, Diachasmimorpha longicaudata (Ashmead), under different moisture conditions in four soil types, using soil water matric potential Pupal stage duration in C capitata was influenced differently for males and females In females, only soil type affected pupal stage duration, which was longer in a clay soil In males, pupal stage duration was individually influenced by moisture and soil type, with a reduction in pupal stage duration in a heavy clay soil and in a sandy clay, with longer duration in the clay soil As allude potential decreased, duration of the pupal stage of C capitata males increased, regardless of soil type C capitata emergence was affected by moisture, regardless of soil type, and was higher in drier soils The emergence of D longicaudata adults was individually influenced by soil type and moisture factors, and the number of emerged D longicaudata adults was three times higher in sandy loam and lower in a heavy clay soil Always, the number of emerged adults was higher at higher moisture conditions C capitata and D longicaudata pupal development was affected by moisture and soil type, which may facilitate pest sampling and allow release areas for the parasitoid to be defined under field conditions.
Resumo:
Proteinase inhibitors (PI) are present in plant tissues, especially in seeds, and act as a defense mechanism against herbivores and pathogens. Serine PI from soybean such as Bowman-Birk (BBPI) and Kunitz have been used to enhance resistance of sugarcane varieties to the sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae), the major pest of this crop. The use of these genetically-modified plants (GM) expressing PI requires knowledge of its sustainability and environmental safety, determining the stability of the introduced characteristic and its effects on non-target organisms. The objective of this study was to evaluate direct effects of ingestion of semi-purified and purified soybean PI and GM sugarcane plants on the soil-dwelling mite Scheloribates praeincisus (Berlese) (Acari: Oribatida). This mite is abundant in agricultural soils and participates in the process of organic matter decomposition; for this reason it will be exposed to PI by feeding on GM plant debris. Eggs of S. praeincisus were isolated and after larvae emerged, immatures were fed milled sugarcane leaves added to semi-purified or purified PI (Kunitz and BBPI) or immatures were fed GM sugarcane varieties expressing Kunitz and BBPI type PI or the untransformed near isogenic parental line variety as a control. Developmental time (larva-adult) and survival of S. praeincisus was evaluated. Neither Kunitz nor BBPI affected S. praeincisus survival. On the other hand, ingestion of semi-purified and purified Kunitz inhibitor diminished duration of S. praeincisus immature stages. Ingestion of GM senescent leaves did not have an effect on S. praeincisus immature developmental time and survival, compared to ingestion of leaves from the isogenic parental plants. These results indicate that cultivation of these transgenic sugarcane plants is safe for the non-target species S. praeincisus.
Resumo:
The increased use of marginal quality water with drip irrigation requires sound fertigation practices that reconcile environmental concerns with viable crop production objectives. We conducted experiments to characterize dynamics and patterns of soil solution within wet bulb formed by drip irrigation. Time-domain reflectometry probes were used to monitor the distribution of potassium nitrate (KNO(3)) and water distribution from drippers discharging at constant flow rates of 2, 4 and 8 L h(-1) in soil-filled containers. Considering results from different profiles, we observed greater solute storage near the dripper decreasing gradually towards the wetting front. About half of the applied KNO(3) solution (48%) was stored in the first layer (0-0.10 m) for all experiments, 29% was stored in the next layer (0.10-0.20 m). Comparing different dripper flow rates, we observed higher solution storage for 4 L h(-1), with 45, 53 and 47% of applied KNO(3) solution accumulating in the first layer (0-0.10 m) for dripper flow rates of 2, 4 and 8 L h(-1), respectively. The results suggest that based on the volume and frequency used in this experiment, it would be advantageous to apply small amounts of solution at more frequent intervals to reduce deep percolation losses of applied water and solutes.
Resumo:
The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth. nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to investigate the antioxidant responses of three bacteria (SD1. KD and K9) isolated from soil previously treated with the herbicides metolachlor and acetochlor. By 165 rRNA gene sequencing, we determined that SD1 is phylogenetically related to Enterobacter asburiae, while KD and K9 have divergent genomes that more closely resemble that of Enterobacter amnigenus. Decreased levels of lipid peroxidation were observed in SD1 and KD following treatment with 34 mM metolachlor or 62 mM acetochlor, respectively, indicating that both bacteria were able to adapt to an increase in ROS production. In the presence of 34 mM metolachlor or 62 mM acetochlor, all bacterial isolates exhibited increases in total catalase (CAT) activity (81% for SDI, 53% for KD and 59% for K9), whereas total SOD activity (assessed based on the profile and intensity of the bands) was slightly reduced when the bacteria were exposed to high concentrations of the herbicides (340 mM metolachlor or 620 mM acetochlor). This effect was due to a specific reduction in SOD IV (K9 and KD isolates) by 45% and 90%, respectively, and SOD V (SD1 isolate) isoenzymes by 60%. The most striking result was obtained in the SD1 isolate, where two novel isoenzymes of glutathione reductase (GR) that responded specifically to metolachlor were identified. In addition, acetochlor was shown to induce the expression of a new 57 kDa protein band in the K9 and KD isolates. The bacteria isolated from the herbicide-contaminated soil exhibited an efficient antioxidant system response at herbicide concentrations of up to 34 mM metolachlor or 62 mM acetochlor. These data suggest a mechanism for tolerance that may include the control of an imbalance in ROS production versus scavenging. The data suggest that specific isoenzymes of CAT and GR could be involved in this herbicide tolerance mechanism. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The climatic water balance is one of the most used tools to assess, indirectly the amount of water present in the soil is capable of meeting the water needs of the plant. This study analyzed the climatologic hydric balance, the effective soil water storage and coffee plant transpiration in dry regimen cultivation. Daily climatologic hydric balance was calculated for coffee from January 2003 to May 2006. It was concluded that even in the most rainy months of the year, there is a hydric deficit in coffee plants grown in a dry regimen; effective soil water storage varied greatly through the years evaluated, and September was the most critical month, when this value remained below 30%; relative transpiration can not be taken as the single evaluation method for yield losses of coffee, grown in a dry regimen.
Resumo:
Natural forest remnants have been set as seed production fields to supply seeds of native tree species for tropical forest restoration, but the effect of different forest types on seed production has not been accessed to date for palm species. In this work, we studied seed development, yield, and quality of two palm species in different tropical forest types in SE Brazil. Seed production of palmiteiro (Euterpe edulis) and queen-palm (Syagrus romanzoffiana), which are largely used in restoration efforts due to their importance for vertebrate frugivores, were studied in natural remnants of Atlantic Rainforest, Restinga Forest, Seasonally Dry Forest, and Cerrado Forest. We studied seed development, yield, size, and germination of seed lots produced in some of these forest types, including seeds harvested in 2008, 2009, and both years. Seed yield and quality, as well as seed dry mass in 2009, were higher for palmiteiro seeds produced in the Atlantic Rainforest, while queen-palm seeds produced at the Restinga Forest showed the higher mass and yield, but the lowest physiological potential. Consequently, these natural differences of seed yield and quality have to be taken into account for establishing standards for seed commercialization and analysis, seed pricing, and seedling production in forest nurseries.