262 resultados para Saturation (materials composition)
Resumo:
This study evaluated levels of digestible lysine and organic zinc for male Ross strain broilers from 1 to 11 days of age. It was used 1,050 chicks distributed in randomized block design, in 5 × 2 factorial scheme, with seven repetitions of 15 birds per experimental unit. The dietary concentrations of digestible lysine were 0.90; 1.00; 1.10; 1.20; and 1.40% combined with 43 and 253 ppm zinc chelate. The diets contained 2,965 ± 18 kcal/kg of apparent metabolizable energy (AME) and 21.48 ± 0.18% of CP. It was determined chemical composition, protein, lipid, mineral and water depositions on carcass and empty body. There was no interaction among the factors digestible lysine and organic zinc. Effect of zinc concentration increase was observed on greatest deposition of body fat, indicating that there is interference in lipid metabolism of the birds in the studied phase. The most pronounced effects resulted from the dietary inclusion of lysine. There was a linear effect on reconstituted body weight as a response to the increase of dietary lysine, which suggests equal or superior requirement to the greatest studied level. However, the deposition of water and protein on the carcass had a quadratic increase, characterizing higher muscle mass accumulation up to the levels 1.25 and 1.27 of this amino acid in the diet. Considering the studied strain, broiler chickens from the first to the 11th days of age require 1.28 ± 0.01% of digestible lysine, according to the deposition of muscle mass.
Resumo:
It was evaluated the effects of levels of digestible lysine and chelate zinc combined in the diet for laying on the egg quality. It was used 720 birds, from 48 to 60 weeks of age, distributed in a completely randomized design in a 3 × 5 factorial scheme with three levels of zinc and five levels of lysine, applied into six replicates in the experimental units of eight birds per plot. The levels were: 137, 309 and 655 ppm zinc and 0.482, 0.527, 0.582, 0.644 and 0.732% digestible lysine. It was not observed any interaction among digestible lysine and zinc for the primary variables of fractions and egg composition. Levels of zinc reduced egg weight, suggesting the lowest efficiency in nutrient intake. At the highest dietary concentration of zinc, the addition of digestible lysine coincided with a linear increase in shell weight. However, zinc addition, regardless of lysine level in the diet, resulted in the reduction of egg weight and of the percentage of mineral matter in the yolk, limiting the efficiency of mineral deposition in this fraction of the egg. Concentration of zinc that produced the best results was 137 ppm inasmuch as higher quantities limit the use of digestible lysine, with effects harming composition and egg quality. The study indicates the following requirement for digestible lysine: 0.639% from the 48th to the 52nd week, 0.679% from the 52nd to 56th week, and 0.635% from the 56th to the 60th week. Considering the total period from 48th to the 60th week, the level 0.638% of lysine or the daily intake of 707 mg of the amino acid met the requirement for egg quality of semi-heavy layers used in this study.
Resumo:
O presente estudo objetivou avaliar o efeito do desmame precoce sobre a composição corporal e sobre parâmetros indicativos do estado nutricional de camundongos. O grupo experimental consistiu de camundongos Swiss Webster, machos, desmamados precocemente (14º dia de vida) e alimentados com ração apropriada para roedores em crescimento até o 21º dia pós-natal (grupo DESM). O grupo controle consistiu de camundongos amamentados até o 21º dia pós-natal (grupo CON). Todos os animais foram sacrificados no 21º dia de vida. O grupo DESM apresentou redução da concentração e conteúdo hepático e muscular de proteínas, da concentração cerebral de proteínas, da concentração e conteúdo cerebral de DNA e da razão proteína/RNA hepática e muscular (p<0,05). Quanto à composição corporal, o grupo DESM apresentou maior conteúdo de umidade, maior percentual de umidade e lipídios e menor conteúdo e percentual de cinzas e proteína na carcaça (p<0,05). Os resultados indicam que o desmame precoce acarreta em prejuízo à composição corporal e a parâmetros indicativos do estado nutricional, o que pode estar relacionado ao retardo do processo de maturação química. Os dados do presente estudo podem contribuir para o entendimento da influência da alimentação com fórmulas infantis sobre a composição corporal e sobre o estado nutricional.
Resumo:
To develop a convenience healthy food snack the partially hydrogenated vegetable fat, used as the flavour fixative agent, was replaced by a non-fat-flavouring solution enriched with inulin and oligofructose. The effects of this replacement on chemical composition, in vitro rate of starch digestion and sensory acceptability were assessed. The new snack presented low-fat levels (0.1 per cent) and around a sevenfold increase in dietary fibre (15.3 per cent of dietary fibre, being 13.3 per cent of fructans) when compared with the traditional ones. The enrichment with fructans reduced the predicted Glycaemic Index by 25 per cent, thus indicating that this dietary fibre contributes effectively towards delaying the in vitro glycaemic response. Fructans-enriched snack presented overall acceptability score (6.6 ± 1.7) similar to the traditional one, flavoured with fatty fixative agent (7.4 ± 1.4). The healthy low-fat fibre-enriched snack produced presented the high sensory acceptability typical for this food product type
Resumo:
Land cover change constitutes one of main way of alteration of soil organic matter in both quantitative and qualitative terms. The goal of this study was to compare the carbon stock and the isotopic signature of the organic matter in the soil of areas with different land use,covered with forest and grass (pasture). The study area is located at Sorocaba, SP, Brazil. Using un-deformed soil samples, we measured the carbon content and bulk density. The isotopic signature of soil carbon was determined through the analysis of isotopic ratio (12)C/(13)C. The pasture soil stocks 48% less carbon than the soil covered by natural forest. The isotopic signature indicated that 42.2% of organic matter of the soil covered by pasture is originated from grasses. This characterizes a highly degradation of organic matter in the environment, both quantitatively and qualitatively. Hence, some guidelines of recuperation are described in order to restore the soil organic matter, structure and porosity.
Resumo:
X-ray powder diffraction was used to study the phase composition of human renal calculi. The stones were collected from 56 donors in Vitoria, Espirito Santo state, southeastern Brazil. An XRD phase quantification revealed that 61% of the studied renal stones were composed exclusively of calcium oxalate [34% formed only by calcium oxalate rnonohydrate (COM) and 27% presents both monohydrate and dihydratate calcium oxalate]. The 39% multi-composed calculi have various other phases such as uric acid and calcium phosphate. Rietveld refinement of XRD data of one apparent monophasic (COM) renal calculus revealed the presence of a small amount of hydroxyapatite. The presence of this second phase and the morphology of the stone (ellipsoidal) indicated that this calculus can be classified as non-papillary type and its nucleation process developed in closed kidney cavities. In order to show some advantages of the X-ray powder diffraction technique, a study of the phase transformation of monohydrate calcium oxalate into calcium carbonate (CaCO(3)) was carried out by annealing of a monophasic COM calculi at 200, 300, and 400 degrees C for 48 h in a N(2) gas atmosphere. The results of the XRD for the heat treated samples is ill good agreement with the thermogravimetric analysis found in the literature and shows that X-ray powder diffraction can be used as a suitable technique to study the composition and phase diagram of renal calculi. (C) 2008 International Centre for Diffraction Data.
Resumo:
In recent years, the Me-Si-B (Me-metal) ternary systems have received considerable attention aiming at the development of high-temperature structural materials. Assuming that any real application of these materials will rely on multicomponent alloys, as is the case of Ni-base superalloys, phase equilibria data of these systems become very important. In this work, results are reported on phase equilibria in the V-Si-B system, and are summarized in the form of an isothermal section at 1600 A degrees C for the V-VSi(2)-VB region. Several alloys of different compositions were prepared via arc melting and then heat-treated at 1600 A degrees C under high vacuum. All the materials in both as-cast and heat-treated conditions were characterized through x-ray diffraction, scanning electron microscopy, and selected alloys via wavelength dispersive spectroscopy. A negligible solubility of B in the V(3)Si, V(5)Si(3) (T(1)), and V(6)Si(5) phases as well as of Si in V(3)B(2) and VB phases was noted. Two ternary phases presenting the structures known as T(2) (Cr(5)B(3)-prototype) and D8(8) (Mn(5)Si(3)-prototype) were observed in both as-cast and heat-treated samples. It is proposed that at 1600 A degrees C the homogeneity range of T(2) extends approximately from 5 at.% to 12 at.% Si at constant vanadium content and the composition of D8(8) phase is close to V(59.5)Si(33)B(7.5) (at.%).
Resumo:
The influence of annealing on the mechanical properties of high-silicon cast iron for three alloys with distinct chromium levels was investigated. Each alloy was melted either with or without the addition of Ti and Mg. These changes in the chemical composition and heat treatment aimed to improve the material's mechanical properties by inhibiting the formation of large columnar crystals, netlike laminae, precipitation of coarse packs of graphite, changing the length and morphology of graphite, and rounding the extremities of the flakes to minimize the stress concentration. For alloys with 0.07 wt.% Cr, the annealing reduced the impact resistance and tensile strength due to an enhanced precipitation of refined carbides and the formation of interdendritic complex nets. Annealing the alloys containing Ti and Mg led to a decrease in the mechanical strength and an increase in the toughness. Alloys containing approximately 2 wt.% Cr achieved better mechanical properties as compared to the original alloy. However, with the addition of Ti and Mg to alloys containing 2% Cr, the chromium carbide formation was inhibited, impairing the mechanical properties. In the third alloy, with 3.5 wt.% of Cr additions, the mechanical strength improved. The annealing promoted a decrease in both hardness and amount of iron and silicon complex carbides. However, it led to a chromium carbide formation, which influenced the mechanical characteristics of the matrix of the studied material.
Resumo:
Nickel-based super alloys are used in a variety of applications in which high-temperature strength and resistance to creep, corrosion, and oxidation are required, such as in aircraft gas turbines, combustion chambers, and automotive engine valves. The properties that make these materials suitable for these applications also make them difficult to grind. Grinding systems for such materials are often built around vitrified cBN (cubic boron nitride) wheels to realize maximum productivity and minimum cost per part. Conditions that yield the most economical combination of stock removal rate and wheel wear are key to the successful implementation of the grinding system. Identifying the transition point for excessive wheel wear is important. The aim of this study is to compare the performance of different cBN wheels when grinding difficult-to-grind (DTG) materials by determining the 'wheel wear characteristic curve', which correlates the G-ratio to the calculated tangential force per abrasive grain. With the proposed methodology, a threshold force per grit above which the wheel wear rate increases rapidly can be quickly identified. A comparison of performance for two abrasive product formulations in the grinding of three materials is presented. The obtained results can be applied for the development of grinding applications for DTG materials.
Resumo:
In this work, the effects of indenter tip roundness oil the load-depth indentation curves were analyzed using finite element modeling. The tip roundness level was Studied based on the ratio between tip radius and maximum penetration depth (R/h(max)), which varied from 0.02 to 1. The proportional Curvature constant (C), the exponent of depth during loading (alpha), the initial unloading slope (S), the correction factor (beta), the level of piling-up or sinking-in (h(c)/h(max)), and the ratio h(max)/h(f) are shown to be strongly influenced by the ratio R/h(max). The hardness (H) was found to be independent of R/h(max) in the range studied. The Oliver and Pharr method was successful in following the variation of h(c)/h(max) with the ratio R/h(max) through the variation of S with the ratio R/h(max). However, this work confirmed the differences between the hardness values calculated using the Oliver-Pharr method and those obtained directly from finite element calculations; differences which derive from the error in area calculation that Occurs when given combinations of indented material properties are present. The ratio of plastic work to total work (W(p)/W(t)) was found to be independent of the ratio R/h(max), which demonstrates that the methods for the Calculation of mechanical properties based on the *indentation energy are potentially not Susceptible to errors caused by tip roundness.
Resumo:
In this work, the effects of conical indentation variables on the load-depth indentation curves were analyzed using finite element modeling and dimensional analysis. A factorial design 2(6) was used with the aim of quantifying the effects of the mechanical properties of the indented material and of the indenter geometry. Analysis was based on the input variables Y/E, R/h(max), n, theta, E, and h(max). The dimensional variables E and h(max) were used such that each value of dimensionless Y/E was obtained with two different values of E and each value of dimensionless R/h(max) was obtained with two different h(max) values. A set of dimensionless functions was defined to analyze the effect of the input variables: Pi(1) = P(1)/Eh(2), Pi(2) = h(c)/h, Pi(3) = H/Y, Pi(4) = S/Eh(max), Pi(6) = h(max)/h(f) and Pi(7) = W(P)/W(T). These six functions were found to depend only on the dimensionless variables studied (Y/E, R/h(max), n, theta). Another dimension less function, Pi(5) = beta, was not well defined for most of the dimensionless variables and the only variable that provided a significant effect on beta was theta. However, beta showed a strong dependence on the fraction of the data selected to fit the unloading curve, which means that beta is especially Susceptible to the error in the Calculation of the initial unloading slope.
Resumo:
Currently, the acoustic and nanoindentation techniques are two of the most used techniques for material elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nanoindentation technique are also reviewed. An experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nanoindentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained.
Resumo:
The effects of chromium or nickel oxide additions on the composition of Portland clinker were investigated by X-ray powder diffraction associated with pattern analysis by the Rietveld method. The co-processing of industrial waste in Portland cement plants is an alternative solution to the problem of final disposal of hazardous waste. Industrial waste containing chromium or nickel is hazardous and is difficult to dispose of. It was observed that in concentrations up to 1% in mass, the chromium or nickel oxide additions do not cause significant alterations in Portland clinker composition. (C) 2008 International Centre for Diffraction Data.
Resumo:
Processed tea and herbal infusions were Studied for their phenol content, antioxidant activity and main flavonoids. Total phenolics were determined by Folin-Ciocalteu method and ranged from N.D. to 46.46 +/- 0.44 mg/g GAE. Flavonoids were investigated by HPLC, and myricetin, quercetin, kaempferol were identified in black, green, and chamomile tea. Antioxidant activity was evaluated using two methods: DPPH and beta-carotene bleaching test (BCB). Using the BCB, the highest activities were found for infusions of black tea, mate, lemongrass, chamomile, and fennel; whereas fresh herbal infusions presented the lowest activities. Using the DPPH method, fresh herbal infusions presented the highest activities. Processed leaves with the lowest IC50 values were green and black tea (147.63 and 288.60 mu g/mL, respectively). The results of this research show that the infusions studied are good Source of compounds presenting antioxidant activity in vitro.
Resumo:
Medium density fiberboard (MDF) is an engineered wood product formed by breaking down selected lignin-cellulosic material residuals into fibers, combining it with wax and a resin binder, and then forming panels by applying high temperature and pressure. Because the raw material in the industrial process is ever-changing, the panel industry requires methods for monitoring the composition of their products. The aim of this study was to estimate the ratio of sugarcane (SC) bagasse to Eucalyptus wood in MDF panels using near infrared (NIR) spectroscopy. Principal component analysis (PCA) and partial least square (PLS) regressions were performed. MDF panels having different bagasse contents were easily distinguished from each other by the PCA of their NIR spectra with clearly different patterns of response. The PLS-R models for SC content of these MDF samples presented a strong coefficient of determination (0.96) between the NIR-predicted and Lab-determined values and a low standard error of prediction (similar to 1.5%) in the cross-validations. A key role of resins (adhesives), cellulose, and lignin for such PLS-R calibrations was shown. PLS-DA model correctly classified ninety-four percent of MDF samples by cross-validations and ninety-eight percent of the panels by independent test set. These NIR-based models can be useful to quickly estimate sugarcane bagasse vs. Eucalyptus wood content ratio in unknown MDF samples and to verify the quality of these engineered wood products in an online process.