341 resultados para SPECTROSCOPIC CHARACTERIZATION
Resumo:
The electronic structure and spectroscopic properties of a manifold of states of a new molecular species, BeAs, have been investigated theoretically at the complete active space self-consistent field/multireference single and double excitations configuration interaction (CASSCF/MRSDCI) approach, using the aug-cc-pV5Z-PP basis set for arsenic, which includes a relativistic effective core potential, and the cc-pV5Z set for beryllium. Potential energy curves of five quartet and eight doublet (I > + S) states correlating with the five lowest-lying dissociation limit are constructed. The effect of spin-orbit coupling is also included in the description of the ground state, and of the doublet states correlating with the second dissociation channel. Dipole moment functions and vibrationally averaged dipole moments are also evaluated. The similarities and differences between BeAs, BeP, and BeN are analyzed. Spin-orbit effects are small for the ground state close to the equilibrium distance, but avoided crossings between Omega = 1/2 states, and between Omega = 3/2 states changes significantly the I > + S curves for the lowest-lying doublets.
Resumo:
The pH-structure correlation of the products of aniline peroxydisulfate reaction was mainly investigated by resonance Raman spectroscopy. The reactions of aniline and ammonium peroxydisulfate were carried out in aqueous solutions of initial pH ranging from 4.9 to 13.2 and monomer/oxidant molar ratio of 4/1. For an initial pH of 4.9, the spectroscopic techniques showed that the emeraldine salt form of polyaniline (PANI-ES) is the main product, corroborating that the usual head-to-tail coupling mechanism is taking place. The resonance Raman spectra at 1064 nm exciting wavelength were useful to detect the emeraldine salt as a minor product for reactions at an initial pH of 5.3-11.5. The Raman spectra of the main product of the reaction at initial pH of 13.2 excited at 1064 and 413.1 nm showed new spectral features consistent with 1,4-Michael-type adducts of aniline monomers and 1,4-benzoquinone-monoimine unit. These compounds and their products of hydrolysis/oxidation are the predominant species for the reaction media of initial pH from 5.3 to 13.2. In order to get PANI with different nanoscale morphologies, a pH value of more than 0 or 1 was used in the aniline polymerization. The spectroscopic data obtained in this work reveal that head-to-tail coupling does not occur when aniline reacts at media pH higher than about 5. It is suggested that chemical structures of the products of aniline oxidation by an unusual mechanism are the driving force for the development of assorted morphologies. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Two porous mixed valent diruthenium(II,III)-dicarboxylate compounds have been prepared and characterized by spectroscopic methods, X-ray diffraction and thermogravimetry. Crystalline solids of [Ru(2)(tere)(2)Cl] center dot 3.5H(2)O (tere=terephthalate) and [Ru(2)(adip)(2)Cl] center dot 1.5H(2)O (adip=adipate) consist of extended chains in which polymeric layers of multiply metal-metal bonded [Ru(2)](5+) cores are bridged by dicarboxylate ligands in paddlewheel type geometries. Units of [Ru(2)(dicarboxylate)(2)](n)(+) are linked by axial bridging chloride ions generating three-dimensional networks. The polymers loose non-bonded water molecules at low temperatures but do not undergo thermal decomposition below 280-300 degrees C. Both of compounds exhibit high BET surface areas, [Ru(2)(tere)(2)Cl]: 235 m(2) g(-1) and [Ru(2)(adip)(2)Cl]: 281 m(2) g(-1), and occlude similar numbers of mol of N(2) per mol of metal. The terephthalate ligand generated an organized structure with supermicropores (total pore size of 0.24 cm(3) g(-1)) while the adipate ligand led to a mesoporous structure (total pore sizes of 0.47 cm(3) g(-1)) for the corresponding diruthenium(II,III)-dicarboxylate polymers. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, the electronic and structural characterization of polyaniline (PANI) formed in cavities of zeolites Y (ZY) and Mordenite (MOR) and montmorillonite (MMT) clay having Cu(II) as oxidant agent are presented. The formation of PANI and its structure is analyzed by Resonance Raman, UV-Vis-NIR, FT-IR and N K XANES techniques. In all cases the structure of PANT formed is different from the ""free"" polymer. The presence of azo bonds linked to phenazine-like rings are observed only for PANI-MMT composites, independent of the kind of oxidant agent employed in the synthesis. The presence of Cu(II) ions leads to the formation of Phenosafranine-like rings. The presence of these phenazine-like rings in the structure of confined PANT chains can also contribute to the enhancement of the thermal stability observed for all composites. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
For the first time, the resonance Raman spectroscopy was used to characterize polymers derived from meta- and para-nitroanilines. In order to improve the polymer structure analysis, other techniques were also used such as FTIR, UV-vis, XRD, XPS, EPR and N K-XANES. The insertion of strong electron-withdrawing groups (NO2) in polyaniline (PANI)-like backbone causes drastic changes in the lower energy charge transfer states, related to the polymer effective conjugation length. The resonance Raman data show that the NO2 moiety has a minor contribution on the CT state in poly(meta-nitroaniline), PMN, while in the poly(para-nitroaniline), PPN, the quinoid structure induced by para-substitution increases the charge density of NO2 groups, causing a more localized chromophore. The characterization of the imine nitrogen and of the protonated segments was done by XPS, N K-XANES and EPR spectroscopies and the lower polymerization degree of PPN, in comparison to PMN, is confirmed by XRD and TG data. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The synthesis and characterization of some pyrazoline compounds of 1,3-diketones with hydrazine derivatives, namely, 1-(S-benzyldithiocarbazate)-3-methyl-5-phenyl-5-hydroxypyrazoline (1); 1-(2-thiophenecarboxylic)-3-methyl-5-phenyl-5-hydroxypyrazoline (2); 1-(2-thiophenecarboxylic)-3,5-dimethyl-5-hydroxypyrazoline (3); 1-(S-benzyldithiocarbazato)-3-methyl-5-phenylpyrazole (4); 1-(2-thiophenecarboxylic)-3-methyl-5-phenylpyrazole (5) and 1-(S-benzyldithiocarbazate)-3,5-dimethylpyrazole (6) are reported. Studies by IR, ((1)H, (13)C)-NMR spectroscopies and single crystal X-ray diffraction revealed that compounds (1)(,) (2) and (3) are formed as pyrazoline, whereas (4) and (5) are formed as pyrazole derivatives only under acidic conditions. Compound (1) crystallizes in orthorhombic P2(1)2(1)2(1), a = 6.38960(10) angstrom, b = 12.9176(3) angstrom, c = 21.2552(5) angstrom, (2) crystallizes in monoclinic, P2(1)/n, a = 11.3617(2) angstrom, b = 8.4988(2) angstrom, c = 92.8900(10)angstrom and beta = 92.8900(5)degrees, (3) crystallizes in monoclinic, C2/c, a = 15.9500(5) angstrom, b = 9.3766(3) angstrom, c = 16.6910(5)angstrom and beta = 113.825(2)degrees, (4) crystallizes in monoclinic, P2(1)/c, a = 15.228(4) angstrom, b = 5.5714(13) angstrom, c = 19.956(5)angstrom and beta = 91.575(7)degrees and (6) crystallizes in orthorhombic, P2(1)2(1)2(1), a = 5.3920(2) angstrom, b = 11.2074(5) angstrom, c = 21.885(1)angstrom . The (3) derivative represents the first pyrazoline compound prepared from 2,4-pentanedione and characterized crystallographically.
Resumo:
Citrus sudden death (CSD) is a new disease of sweet orange and mandarin trees grafted on Rangpur lime and Citrus volkameriana rootstocks. It was first seen in Brazil in 1999, and has since been detected in more than four million trees. The CSD causal agent is unknown and the current hypothesis involves a virus similar to Citrus tristeza virus or a new virus named Citrus sudden death-associated virus. CSD symptoms include generalized foliar discoloration, defoliation and root death, and, in most cases, it can cause tree death. One of the unique characteristics of CSD disease is the presence of a yellow stain in the rootstock bark near the bud union. This region also undergoes profound anatomical changes. In this study, we analyse the metabolic disorder caused by CSD in the bark of sweet orange grafted on Rangpur lime by nuclear magnetic resonance (NMR) spectroscopy and imaging. The imaging results show the presence of a large amount of non-functional phloem in the rootstock bark of affected plants. The spectroscopic analysis shows a high content of triacylglyceride and sucrose, which may be related to phloem blockage close to the bud union. We also propose that, without knowing the causal CSD agent, the determination of oil content in rootstock bark by low-resolution NMR can be used as a complementary method for CSD diagnosis, screening about 300 samples per hour.
Resumo:
Chemometric methods can contribute to soil research by permitting the extraction of more information from the data. The aim of this work was to use Principal Component Analysis to evaluate data obtained through chemical and spectroscopic methods on the changes in the humification process of soil organic matter from two tropical soils after sewage sludge application. In this case, humic acids extracted from Typic Eutrorthox and Typic Haplorthox soils with and without sewage sludge application for 7 consecutive years were studied. The results obtained for all of the samples and methods showed two clusters: samples extracted from the two soil types. These expected results indicated the textural difference between the two soils was more significant than the differences between treatments (control and sewage sludge application) or between depths. In this case, an individual chemometric treatment was made for each type of soil. It was noted that the characterization of the humic acids extracted from soils with and without sewage sludge application after 7 consecutive years using several methods supplies important results about changes in the humification degree of soil organic matter, These important result obtained by Principal Component Analysis justify further research using these methods to characterize the changes in the humic acids extracted from sewage sludge-amended soils. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Calcium phosphate salts, or more specifically hydroxyapatite, are products of great interest in the fields of medical and dental science due to their biocompatibility and osteoconduction property. Deproteinized xenografts are primarily constituted of natural apatites, sintered or not. Variations in the industrial process may affect physicochemical properties and, therefore, the biological outcome. The purpose of this work was to characterize the physical and chemical properties of deproteinized xenogenic biomaterials, Bio-Oss (Geistlich Biomaterials, Wolhuser, Switzerland) and Gen-Ox (Baumer S.A., Brazil), widely used as bone grafts. Scanning electron microscopy, infrared region spectroscopy, X-ray diffraction, thermogravimetry and degradation analysis were conducted. The results show that both materials presented porous granules, composed of crystalline hydroxyapatite without apparent presence of other phases. Bio-Oss presented greater dissolution in Tris-HCl than Gen-Ox in the degradation test, possibly due to the low crystallinity and the presence of organic residues. In conclusion, both commercial materials are hydroxyapatite compounds, Bio-Oss being less crystalline than Gen-Ox and, therefore, more prone to degradation.
Resumo:
With the increase in life expectancy, biomaterials have become an increasingly important focus of research because they are used to replace parts and functions of the human body, thus contributing to improved quality of life. In the development of new biomaterials, the Ti-15Mo alloy is particularly significant. In this study, the Ti-15Mo alloy was produced using an arc-melting furnace and then characterized by density, X-ray diffraction, optical microscopy, hardness and dynamic elasticity modulus measurements, and cytotoxicity tests. The microstructure was obtained with β predominance. Microhardness, elasticity modulus, and cytotoxicity testing results showed that this material has great potential for use as biomaterial, mainly in orthopedic applications.
Resumo:
Flavobacterium columnare is the causative agent of columnaris disease in freshwater fish, implicated in skin and gill disease, often causing high mortality. The aim of this study was the isolation and characterization of Flavobacterium columnare in tropical fish in Brazil. Piracanjuba (Brycon orbignyanus), pacu (Piaractus mesopotamicus), tambaqui (Colossoma macropomum) and cascudo (Hypostomus plecostomus) were examined for external lesions showing signs of colunmaris disease such as greyish white spots, especially on the head, dorsal part and caudal fin of the fish. The sampling comprised 50 samples representing four different fish species selected for study. Samples for culture were obtained by skin and kidney scrapes with a sterile cotton swabs of columnaris disease fish and streaked onto Carlson and Pacha (1968) artificial culture medium (broth and solid) which were used for isolation. The strains in the liquid medium were Gram negative, long, filamentous, exhibited flexing movements (gliding motility), contained a large number of long slender bacteria and gathered into ‘columns'. Strains on the agar produced yellow-pale colonies, rather small, flat that had rhizoid edges. A total of four Flavobacterium columnare were isolated: 01 Brycon orbignyanus strain, 01 Piaractus mesopotamicus strain, 01 Colossoma macropomum strain, and 01 Hypostomus plecostomus strain. Biochemical characterization, with its absorption of Congo red dye, production of flexirubin-type pigments, H2S production and reduction of nitrates proved that the isolate could be classified as Flavobacterium columnare.
Resumo:
Physiological and biochemical aspects of assai palm during seed germination and early seedling growth were investigated. Seeds collected from plants growing in flooded and upland forests were used to determine the influence of normoxic (aerobic) and anoxic (anaerobic) conditions in germination and the initial and average time of development in the roots and shoots. After 75 days, seedlings germinated under normoxia were transferred to trays and submitted to flooding. Seed reserves (lipids, proteins, soluble sugars and starch) were monitored for quiescent and germinated seeds maintained under normoxic and anoxic conditions, as well as after 5, 10 and 20 days of seedling growth. Alcohol dehydrogenase (ADH) activity was quantified in roots and leaves of seedlings without or with flooding (partial and total). Seeds were not able to germinate under anoxia. Different strategies of storage mobilization of lipids, proteins, soluble sugars and starch were observed in seeds of each environment. ADH activity was induced by anoxia, with the highest level observed in the leaves. This study showed that, under normoxic conditions, the best developmental performance of assai palm seeds, from flooded or upland forest areas, during germination was associated with primary metabolites mobilization and seedling flooding tolerance with increased ADH activity. We conclude that the assai palm is well adapted to the anoxic conditions provoked by flooding.
Resumo:
Gracilaria Greville is a genus of seaweed that is economically explored by the cosmetic, pharmaceutical and food industries. One of the biggest problems associated with growing Gracilaria is the discharge of heavy metals into the marine environment. The absorption of heavy metals was investigated with the macroalga Gracilaria tenuistipitata Zhang et Xia, cultivated in a medium containing copper (Cu) and cadmium (Cd). In biological samples, EC50 concentrations of 1 ppm for cadmium and 0.95 ppm for copper were used. These concentrations were based on seaweed growth curves obtained over a period of six days in previous studies. ICP-AES was used to determine the amount of metal that seaweeds absorbed during this period. G. tenuistipitata was able to bioaccumulate both metals, about 17% of copper and 9% of cadmium. Basal natural levels of Cu were found in control seaweeds and in G. tenuistipitata exposed to Cd. In addition, the repertoire of other important chemical elements, as well as their concentrations, was determined for G. tenuistipitata and two other important seaweeds, G. birdiae Plastino & Oliveira and G. domingensis (Kützing) Sonder ex Dickie, collected in natural environments on the Brazilian shore.
Resumo:
A karyotype analysis of the electric eel, Electrophorus electricus (Teleostei, Gymnotiformes), a strongly electric fish from northern South America, is presented. Two female specimens were analyzed, one from the Amazon River and one from the Araguaia River. The specimens had a chromosomal number of 2n = 52 (42M-SM + 10A). C-bands were present in a centromeric and pericentromeric position on part of the chromosomes; some interstitial C-bands were also present. Heteromorphic nucleolus organizer regions (NORs) were detected in two chromosome pairs of the specimen from the Amazon River. The chromosome number and karyotype characteristics are similar to those of other Gymnotidae species. The genera Electrophorus and Gymnotus are positioned as the basal lineages in the Gymnotiformes phylogeny.
Resumo:
We describe the experimental apparatus and the methods to achieve Bose-Einstein condensation in 87Rb atoms. Atoms are first laser cooled in a standard double magneto-optical trap setup and then transferred into a QUIC trap. The system is brought to quantum degeneracy selectively removing the hottest atoms from the trap by radio-frequency radiation. We also present the main theoretical aspects of the Bose-Einstein condensation phenomena in atomic gases.