130 resultados para S-like to F-like tungsten ions
Resumo:
This study presents a solid-like finite element formulation to solve geometric non-linear three-dimensional inhomogeneous frames. To achieve the desired representation, unconstrained vectors are used instead of the classic rigid director triad; as a consequence, the resulting formulation does not use finite rotation schemes. High order curved elements with any cross section are developed using a full three-dimensional constitutive elastic relation. Warping and variable thickness strain modes are introduced to avoid locking. The warping mode is solved numerically in FEM pre-processing computational code, which is coupled to the main program. The extra calculations are relatively small when the number of finite elements. with the same cross section, increases. The warping mode is based on a 2D free torsion (Saint-Venant) problem that considers inhomogeneous material. A scheme that automatically generates shape functions and its derivatives allow the use of any degree of approximation for the developed frame element. General examples are solved to check the objectivity, path independence, locking free behavior, generality and accuracy of the proposed formulation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The characterization of a coffee gene encoding a protein similar to miraculin-like proteins, which are members of the plant Kunitz serine trypsin inhibitor (STI) family of proteinase inhibitors (PIs), is described. PIs are important proteins in plant defence against insects and in the regulation of proteolysis during plant development. This gene has high identity with the Richadella dulcifica taste-modifying protein miraculin and with the tomato protein LeMir; and was named as CoMir (Coffea miraculin). Structural protein modelling indicated that CoMir had structural similarities with the Kunitz STI proteins, but suggested specific folding structures. CoMir was up-regulated after coffee leaf miner (Leucoptera coffella) oviposition in resistant plants of a progeny derived from crosses between C. racemosa (resistant) and C. arabica (susceptible). Interestingly, this gene was down-regulated during coffee leaf miner herbivory in susceptible plants. CoMir expression was up-regulated after abscisic acid application and wounding stress and was prominent during the early stages of flower and fruit development. In situ hybridization revealed that CoMir transcripts accumulated in the anther tissues that display programmed cell death (tapetum, endothecium and stomium) and in the metaxylem vessels of the petals, stigma and leaves. In addition, the recombinant protein CoMir shows inhibitory activity against trypsin. According to the present results CoMir may act in proteolytic regulation during coffee development and in the defence against L. coffeella. The similarity of CoMir with other Kunitz STI proteins and the role of CoMir in plant development and plant stress are discussed.
Resumo:
The goal of this work is to study and relate electrical and optical properties of diamond-like carbon (DLC) thin films for applications in electronic devices. DLC films were deposited in a reactive RF magnetron sputtering system on p-type silicon and glass substrates. The target was a 99.9999% pure, 6 in. diameter graphite plate and methane was used as processing gas. Eight DLC films were produced for each substrate, varying deposition time, the reactor pressure between 5 mTorr and 10 mTorr while the RF power was applied at 13.56 MHz and varied between 100, 150, 200 and 250W. After deposition, the films were analyzed by I-V and C-V measurements (Cheng et al. (2004) [1]) in order to determine the electric resistivity, photo-current response and dielectric constant, optical transmittance, used to find the optical gap by the Tauc method; and by photoluminescence analysis to determine the photoemission and confirm the optical band gap. These characteristics are compared and the influence of the deposition parameters is discussed. (C) 2011 Published by Elsevier B.V.
Resumo:
In this work, we have studied the influence of the substrate surface condition on the roughness and the structure of the nanostructured DLC films deposited by high-density plasma chemical vapor deposition Four methods were used to modify the silicon wafers surface before starting the deposition processes of the nanostructured DLC films. micro-diamond powder dispersion, micro-graphite powder dispersion, and roughness generation by wet chemical etching and roughness generation by plasma etching. The reference wafer was only submitted to a chemical cleaning. It was possible to see that the final roughness and the sp(3) hybridization degree (that is related with the structure and chemical composition) strongly depend on the substrate surface conditions The surface roughness was observed by AFM and SEM and the hybridization degree of the DLC films was analyzed by Raman Spectroscopy Thus, the effects of the substrate surface on the DLC film structure were confirmed. These phenomena can be explained by the fact that the locally higher surface energy and the sharp edges may induce local defects promoting the nanostructured characteristics in the DLC films. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, we have studied the influence of the substrate surface condition on the roughness and the structure of the nanostructured DLC films deposited by High Density Plasma Chemical Vapor Deposition. Four methods were used to modify the silicon wafers surface before starting the deposition processes of the nanostructured DLC films: micro-diamond powder dispersion, micro-graphite powder dispersion, and roughness generation by wet chemical etching and roughness generation by plasma etching. The reference wafer was only submitted to a chemical cleaning. It was possible to see that the final roughness and the sp(3) hybridization degree strongly depend on the substrate surface conditions. The surface roughness was observed by AFM and SEM and the hybridization degree of the DLC films was analyzed by Raman Spectroscopy. In these samples, the final roughness and the sp(3) hybridization quantity depend strongly on the substrate surface condition. Thus, the effects of the substrate surface on the DLC film structure were confirmed. These phenomena can be explained by the fact that the locally higher surface energy and the sharp edges may induce local defects promoting the nanostructured characteristics in the DLC films. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report on the detection of the transport Barkhausen-like noise (TBN) in polycrystalline samples of Bi(1.65)Pb(0.35)Sr(2)Ca(2) Cu(3)O(10+delta) (Bi-2223) which were subjected to different uniaxial compacting pressures. The transport Barkhausen-like noise was measured when the sample was subjected to an ac triangular-shape magnetic field (f similar to 1 Hz) with maximum amplitude B(max) approximate to 5.5 mT, in order to avoid the flux penetration within the superconducting grains. Analysis of the TBN signal, measured for several values of excitation current density, indicated that the applied magnetic field in which the noise signal first appears, B(a)(t(i)), is closely related to the magnetic-flux pinning capability of the material. The combined results are consistent with the existence of three different superconducting levels within the samples: (i) the superconducting grains; (ii) the superconducting clusters; and (iii) the weak-links. We finally argue that TBN measurements constitute a powerful tool for probing features of the intergranular transport properties in polycrystalline samples of high-T(c) superconductors. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present study describes the direct regeneration of protocorm-like bodies (PLBs) in leaf explants of the tropical species Oncidium flexuosum. The explants were inoculated in a solid, modified Murashige and Skoog (MS) medium with different concentrations of the growth regulator thidiazuron (TDZ) and with or without 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene acetic acid (NAA), and kept away from light or in a 16-h photoperiod. The presence of auxins, 2,4-D, and NAA inhibited the formation of PLBs. The highest frequency of explants that regenerated PLBs (80%) was obtained when they were maintained in a culture medium containing 1.5 mu M TDZ under dark conditions. In the same culture medium but under a 16-h photoperiod, 95% of the leaf explants presented necrosis. Therefore, darkness was crucial for the regeneration of PLBs in O. flexuosum leaf explants, which is in disagreement with the literature. PLBs developed from the division of epidermal and subepidermal cells mainly on the adaxial side of the apex region of the explant. Plants with well-developed leaves and roots grew after the PLBs were transferred to growth regulator-free medium under a 16-h photoperiod.
Resumo:
Moniliophthora perniciosa is a hemibiotrophic fungus that causes witches` broom disease (WBD) in cacao. Marked dimorphism characterizes this fungus, showing a monokaryotic or biotrophic phase that causes disease symptoms and a later dikaryotic or saprotrophic phase. A combined strategy of DNA microarray, expressed sequence tag, and real-time reverse-transcriptase polymerase chain reaction analyses was employed to analyze differences between these two fungal stages in vitro. In all, 1,131 putative genes were hybridized with cDNA from different phases, resulting in 189 differentially expressed genes, and 4,595 reads were clusterized, producing 1,534 unigenes. The analysis of these genes, which represent approximately 21% of the total genes, indicates that the biotrophic-like phase undergoes carbon and nitrogen catabollite repression that correlates to the expression of phytopathogenicity genes. Moreover, downregulation of mitochondrial oxidative phosphorylation and the presence of a putative ngr1 of Saccharomyces cerevisiae could help explain its lower growth rate. In contrast, the saprotrophic mycelium expresses genes related to the metabolism of hexoses, ammonia, and oxidative phosphorylation, which could explain its faster growth. Antifungal toxins were upregulated and could prevent the colonization by competing fungi. This work significantly contributes to our understanding of the molecular mechanisms of WBD and, to our knowledge, is the first to analyze differential gene expression of the different phases of a hemibiotrophic fungus.
Resumo:
The bacteriocin-producing strain Enterococcus faecium ST5Ha was isolated from smoked salmon and identified by biomolecular techniques. Ent. faecium ST5Ha produces a pediocin-like bacteriocin with activity against several lactic acid bacteria, Listeria spp. and some other human and food pathogens, and remarkably against HSV-1 virus. Bacteriocin ST5Ha was produced at high levels in MRS broth at 30 degrees C and 37 degrees C, reaching a maximum production of 1.0 x 10(9) AU/ml, checked against Listeria ivanovii ATCC19119 as target strain and surrogate of pathogenic strain Listeria monocytogenes. The molecular weight of bacteriocin ST5Ha was estimated to be 4.5 kDa according to tricine-SDS-PAGE data. Ent. faecium ST5Ha harbors a 1.044 kb chromosomal DNA fragment fitting in size to that of pediocin PA-1/AcH. In addition, the sequencing of bacteriocin ST5Ha gene indicated 99% of DNA homology to pediocin PA-1/AcH. The combined application of low levels (below MIC) of ciprofloxacin and bacteriocin ST5Ha resulted in a synergetic effect in the inhibition of target strain L ivanovii ATCC19119. Bacteriocin ST5Ha displayed antiviral activity against HSV-1, an important human pathogen, with a selectivity index of 173. To the best of our knowledge, this is the first report on Ent. faecium as a potential producer of pediocin-like bacteriocin with antiviral activity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Lactic acid bacteria ( LAB) are currently used by food industries because of their ability to produce metabolites with antimicrobial activity against gram-positive pathogens and spoilage microorganisms. The objectives of this study were to identify naturally occurring bacteriocinogenic or bacteriocinogenic-like LAB in raw milk and soft cheese and to detect the presence of nisin-coding genes in cultures identified as Lactococcus lactis. Lactic acid bacteria cultures were isolated from 389 raw milk and soft cheese samples and were later characterized for the production of antimicrobial substances against Listeria monocytogenes. Of these, 58 (14.9%) LAB cultures were identified as antagonistic; the nature of this antagonistic activity was then characterized via enzymatic tests to confirm the proteinaceous nature of the antimicrobial substances. In addition, 20 of these antagonistic cultures were selected and submitted to genetic sequencing; they were identified as Lactobacillus plantarum (n = 2) and Lactococcus lactis ssp. lactis (n = 18). Nisin genes were identified by polymerase chain reaction in 7 of these cultures. The identified bacteriocinogenic and bacteriocinogenic-like cultures were highly variable concerning the production and activity of antimicrobial substances, even when they were genetically similar. The obtained results indicated the need for molecular and phenotypic methodologies to properly characterize bacteriocinogenic LAB, as well as the potential use of these cultures as tools to provide food safety.
Resumo:
Ethylene signal transduction initiates with ethylene binding at receptor proteins and terminates in a transcription cascade involving the EIN3/EIL transcription factors. Here, we have isolated four cDNAs homologs of the Arabidopsis EIN3/EIN3-like gene, MA-EILs (Musa acuminata ethylene insensitive 3-like) from banana fruit. Sequence comparison with other banana EIL gene already registered in the database led us to conclude that, at this day, at least five different genes namely MA-EIL1, MA-EIL2/AB266318, MA-EIL3/AB266319, MA-EIL4/AB266320 and AB266321 exist in banana. Phylogenetic analyses included all banana EIL genes within a same cluster consisting of rice OsEILs, a monocotyledonous plant as banana. However, MA-EIL1, MA-EIL2/AB266318, MA-EIL4/AB266320 and AB266321 on one side, and MA-EIL3/AB266319 on the other side, belong to two distant subclusters. MA-EIL mRNAs were detected in all examined banana tissues but at lower level in peel than in pulp. According to tissues, MA-EIL genes were differentially regulated by ripening and ethylene in mature green fruit and wounding in old and young leaves. MA-EIL2/AB266318 was the unique ripening- and ethylene-induced gene; MA-EIL1, MA-EIL4/Ab266320 and AB266321 genes were downregulated, while MA-EIL3/AB266319 presented an unusual pattern of expression. Interestingly, a marked change was observed mainly in MA-EIL1 and MA-EIL3/Ab266319 mRNA accumulation concomitantly with changes in ethylene responsiveness of fruit. Upon wounding, the main effect was observed in MA-EIL4/AB266320 and AB266321 mRNA levels, which presented a markedly increase in both young and old leaves, respectively. Data presented in this study suggest the importance of a transcriptionally step control in the regulation of EIL genes during banana fruit ripening.
Resumo:
Farnesol (FOH) is a non-sterol isoprenoid produced by dephosphorylation of farnesyl pyrophosphate, a catabolite of the cholesterol biosynthetic pathway. These isoprenoids inhibit proliferation and induce apoptosis. It has been shown previously that FOH triggers morphological features characteristic of apoptosis in the filamentous fungus Aspergillus nidulans. Here, we investigate which pathways are influenced through FOH by examining the transcriptional profile of A. nidulans exposed to this isoprenoid. We observed decreased mRNA abundance of several genes involved in RNA processing and modification, transcription, translation, ribosomal structure and biogenesis, amino acid transport and metabolism, and ergosterol biosynthesis. We also observed increased mRNA expression of genes encoding a number of mitochondrial proteins and characterized in detail one of them, the aifA, encoding the Apoptosis-Inducing Factor (AIF)-like mitochondrial oxidoreductase. The Delta aifA mutant is more sensitive to FOH (about 8.0% and 0% survival when exposed to 10 and 100 mu M FOH respectively) than the wild type (about 97% and 3% survival when exposed to 10 and 100 mu M FOH respectively). These results suggest that AifA is possibly important for decreasing the effects of FOH and reactive oxygen species. Furthermore, we showed an involvement of autophagy and protein kinase C in A. nidulans FOH-induced apoptosis.
Resumo:
Farnesol (FOH) is a nonsterol isoprenold produced by dephosphorylanon of farnesyl pyrophosphate a catabolite of the cholesterol biosynthetic pathway These isoprenoids inhibit proliferation and induce apoptosis Here we show that Aspergillus nidulans MA encoding the apoptosis-Inducing factor (AIF)-like mitochondrial oxidoreductase plays a role in the function of the mitochondrial Complex I Additionally we demonstrated that ndeA B and ndiA encode external and internal alternative NADH dehydrogenases respectively that have a function in FOH resistance When exposed to FOH the Delta aifA and Delta ndeA strains have increased ROS production while Delta ndeB Delta ndeA Delta ndeB and Andul mutant strains showed the same ROS accumulation than in the absence of FOH We observed several compensatory mechanisms affecting the differential survival of these mutants to FOH (C) 2010 Elsevier Inc All rights reserved
Resumo:
A thrombin-like enzyme, named BjussuSP-I, isolated from Bothrops jararacussu snake venom, is an acidic single-chain glycoprotein with M-r = 61,000, pI similar to 3.8 and 6% sugar. BjussuSP-I shows high proteolytic activity upon synthetic substrates, such as S-2238 and S-2288. It also shows procoagulant and kallikrein-like activity, but is unable to act on platelets and plasmin. These activities are inhibited by specific inhibitors of this class of enzymes. The complete cDNA sequence of BjussuSP-I with 696 bp encodes open reading frames of 232 amino acid residues, which conserve the common domains of thrombin-like serine proteases. BjussuSP-I shows a high structural homology with other thrombin-like enzymes from snake venoms where common amino acid residues are identified as those corresponding to the catalytic site and subsites S1, S2 and S3 already reported. In this study, we also demonstrated the importance of N-linked glycans, to improve thrombin-like activity of BjussuSP-I toxin. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
The present work evaluates both in vitro and in vivo antitumor activity of BPB-modified BthTX-I and its cationic synthetic peptide derived from the 115-129 C-terminal region. BPB-BthTX-1 presented cytotoxicity of 10-40% on different tumor cell lines, which were also susceptible to the lytic action of the synthetic peptide. Injection of the modified protein or the peptide in mice, 5 days after transplantation of S 180 tumor cells, reduced 30 and 36% of the tumor size on day 14th and 76 and 79% on day 60th, respectively, when compared to the untreated control group. Thus, these antitumor properties might be of interest in the development of therapeutic strategies against cancer. (C) 2009 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.