87 resultados para Residue of guava
Resumo:
Adenine phosphoribosyltransferase (APRT) is an important enzyme component of the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida are unable to synthesize purines de novo and use the salvage pathway for the synthesis of purine bases rendering this biosynthetic pathway an attractive target for antiparasitic drug design. The recombinant human adenine phosphoribosyltransferase (hAPRT) structure was resolved in the presence of AMP in the active site to 1.76 angstrom resolution and with the substrates PRPP and adenine simultaneously bound to the catalytic site to 1.83 angstrom resolution. An additional structure was solved containing one subunit of the dimer in the apo-form to 2.10 angstrom resolution. Comparisons of these three hAPRT structures with other `type I` PRTases revealed several important features of this class of enzymes. Our data indicate that the flexible loop structure adopts an open conformation before and after binding of both substrates adenine and PRPR Comparative analyses presented here provide structural evidence to propose the role of Glu 104 as the residue that abstracts the proton of adenine N9 atom before its nucleophilic attack on the PRPP anomeric carbon. This work leads to new insights to the understanding of the APRT catalytic mechanism.
Resumo:
Aspergillus terricola and Aspergillus ochraceus, isolated from Brazilian soil, were cultivated in Vogel and Adams media supplemented with 20 different carbon sources, at 30 A degrees C, under static conditions, for 120 and 144 h, respectively. High levels of cellulase-free xylanase were produced in birchwood or oat spelt xylan-media. Wheat bran was the most favorable agricultural residue for xylanase production. Maximum activity was obtained at 60 A degrees C and pH 6.5 for A. terricola, and 65 A degrees C and pH 5.0 for A. ochraceus. A. terricola xylanase was stable for 1 h at 60 A degrees C and retained 50% activity after 80 min, while A. ochraceus xylanase presented a t (50) of 10 min. The xylanases were stable in an alkali pH range. Biobleaching of 10 U/g dry cellulose pulp resulted in 14.3% delignification (A. terricola) and 36.4% (A. ochraceus). The brightness was 2.4-3.4% ISO higher than the control. Analysis in SEM showed defibrillation of the microfibrils. Arabinase traces and beta-xylosidase were detected which might act synergistically with xylanase.
Resumo:
In this study the interaction between magnetic nanoparticles (MNPs) surface-coated with meso-2,3-dimercaptosuccinic acid (DMSA) with both bovine serum albumin (BSA) and human serum albumin (HSA) was investigated. The binding of the MNP-DMSA was probed by the fluorescence quenching of the BSA and HSA tryptophan residue. Magnetic resonance and light microscopy analyses were carried out in in vivo tests using female Swiss mice. The binding constants (K(b)) and the complex stoichiometries (n) indicate that MNP-DMSA/BSA and MNP-DMSA/HSA complexes have low association profiles. After five minutes following intravenous injection of MNP-DMSA into mice`s blood stream we found the lung firstly target by the MNP-DMSA, followed by the liver in a latter stage. This finding suggests that the nanoparticle`s DMSA-coating process probably hides the thiol group, through which albumin usually binds. This indicates that biocompatible MNP-DMSA is a very promising material system to be used as a drug delivery system (DDS), primarily for lung cancer treatment.
Resumo:
The structural determinants of myotoxicity of bothropstoxin-I (BthTX-I), a Lys49 phospholipase A(2) from Bothrops jararacussu venom, were studied by measuring the resting membrane potential in the mouse phrenic nerve-diaphragm preparation. This method proved to be around 100-fold more sensitive than the creatine kinase release assay, and was used to evaluate a total of 31 site-directed BthTX-I alanine scanning mutants. Mutants that reduced the resting membrane potential were located in a surface patch defined by residues in the C-terminal loop (residues 115-129), positions 37-39 in the membrane interfacial recognition surface (Y46 and K54), and residue K93. These results expand the known structural determinants of the biological activity as evaluated by previous creatine kinase release experiments. Furthermore, a strong correlation is observed between the structural determinants of sarcolemma depolarization and calcium-independent disruption of liposome membranes, suggesting that a common mechanism of action underlies the permeabilization of the biological and model membranes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Adrenocorticotropin (ACM) and alpha-melanocyte stimulating hormone (alpha-MSH) are peptides which present many physiological effects related to pigmentation, motor and sexual behavior, learning and memory, analgesia, anti-inflammatory and antipyretic processes. The 13 amino acid residues of alpha-MSH are the same initial sequence of ACM and due to the presence of a tryptophan residue in position 9 of the peptide chain, fluorescence techniques could be used to investigate the conformational properties of the hormones in different environments and the mechanisms of interaction with biomimetic systems like sodium dodecyl sulphate (SDS) micelles, sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates and neutral polymeric micelles. In buffer solution, fluorescence parameters were typical of peptides containing tryptophan exposed to the aqueous medium and upon addition of surfactant and polymer molecules, the gradual change of those parameters demonstrated the interaction of the peptides with the microheterogeneous systems. From time-resolved experiments it was shown that the interaction proceeded with conformational changes in both peptides, and further information was obtained from quenching of Trp fluorescence by a family of N-alkylpyridinium ions, which possess affinity to the microheterogeneous systems dependent on the length of the alkyl chain. The quenching of Trp fluorescence was enhanced in the presence of charged micelles, compared to the buffer solution and the accessibility of the fluorophore to the quencher was dependent on the peptide and the alkylpyridinium: in ACTH(1-21) highest collisional constants were obtained using ethylpyridinium as quencher, indicating a location of the residue in the surface of the micelle, while in alpha-MSH the best quencher was hexylpyridinium, indicating insertion of the residue into the non-polar region of the micelles. The results had shown that the interaction between the peptides and the biomimetic systems where driven by combined electrostatic and hydrophobic effects: in ACTH(1-24) the electrostatic interaction between highly positively charged C-terminal and negatively charged surface of micelles; and aggregates predominates over hydrophobic interactions involving residues in the central region of the peptide; in alpha-MSH, which presents one residual positive charge, the hydrophobic interactions are relevant to position the Trp residue in the non-polar region of the microheterogeneous systems. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
TRAPS is the most common of the autosomal dominant periodic fever syndromes. It is caused by mutations in the TNFRSF1A gene, which encodes for the type 1 TNF-receptor (TNFR1). We describe here a Brazilian patient with TRAPS associated to a novel TNFRSF1A de novo mutation and the response to anti-TNF therapy. The patient is a 9-year-old girl with recurrent fevers since the age of 3 years, usually lasting 3 to 7 days, and recurring every other week. These episodes are associated with mild abdominal pain, nausea, vomiting and generalized myalgia. Recurrent conjunctivitis and erysipela-like skin lesions in the lower limbs also occur. Laboratory studies show persistent normocytic normochromic anemia, thrombocytosis, elevated erythrocyte sedimentation rate and C-reactive protein. IgD levels are normal. Mutational screening of TNFRSF1A revealed the association of a novel C30F mutation with the common R92Q low-penetrance mutation. The R92Q mutation is seen in 5% of the general population and is associated with an atypical inflammatory phenotype. The patient had a very good response to etanercept, with cessation of fever and normalization of inflammatory markers. Our report expands the spectrum of TNFRSF1A mutations associated with TRAPS, adding further evidence for possible additive effects of a low-penetration R92Q and cysteine residue mutations, and confirms etanercept as an efficacious treatment alternative.
Resumo:
Peptides constitute the largest group of Hymenoptera venom toxins; some of them interact with GPCR, being involved with the activation of different types of leukocytes, smooth muscle contraction and neurotoxicity. Most of these toxins vary from dodecapeptides to tetradecapeptides, amidated at their C-teminal amino acid residue. The venoms of social wasps can also contains some tetra-, penta-, hexa- and hepta-peptides, but just a few of them have been structurally and functionally characterized up to now. Protonectin (ILG-TILGLLKGL-NH(2)) is a polyfunctional peptide, presenting mast cell degranulation, release of lactate dehydrogenase (LDH) from mast cells, antibiosis against Gram-positive and Gram-negative bacteria and chemotaxis for polymorphonucleated leukocytes (PMNL), while Protonectin (1-6) (ILGTIL-NH(2)) only presents chemotaxis for PMNL However, the mixture of Protonectin (1-6) with Protonectin in the molar ratio of 1:1 seems to potentiate the biological activities dependent of the membrane perturbation caused by Protonectin, as observed in the increasing of the activities of mast cell degranulation, LDH releasing from mast cells, and antibiosis. Despite both peptides are able to induce PMNL chemotaxis, the mixture of them presents a reduced activity in comparison to the individual peptides. Apparently, when mixed both peptides seems to form a supra-molecular structure, which interact with the receptors responsible for PMNL chemotaxis, disturbing their individual docking with these receptors. In addition to this, a comparison of the sequences of both peptides suggests that the sequence ILGTIL is conserved, suggesting that it must constitute a linear motif for the structural recognition by the specific receptor which induces leukocytes migration. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Type 1, X-linked Hyper-IgM syndrome (HIGM1) is caused by mutations in the gene encoding the CD154 protein, also known as CD40 ligand (CD40LG). CD40L is expressed in activated T cells and interacts with CD40 receptor expressed on B lymphocytes and dendritic cells. Affected patients present cellular and humoral immune defects, with infections by intracellular, opportunistic and extracellular pathogens. In the present study we investigated the molecular defects underlying disease in four patients with HIGM1. We identified four distinct CD40L mutations, two of them which have not been previously described. P1 harboured the novel p.G227X mutation which abolished CD40L expression. P2 had a previously described frame shift deletion in exon 2 (p.I53fsX65) which also prevented protein expression. P3 demonstrated the previously known p.V126D change in exon 4, affecting the TNF homology (TNFH) domain. Finally, P4 evidenced the novel p.F229L mutation also located in the TNFH domain. In silico analysis of F229L predicted the change to be pathological, affecting the many hydrophobic interactions of this residue. Precise molecular diagnosis in HIGM syndrome allows reliable detection of carriers, making genetic counselling and prenatal diagnosis possible.
Resumo:
We report the identification of a novel mutation at a highly conserved residue within the N-terminal region of spermine synthase (SMS) in a second family with Snyder-Robinson X-linked mental retardation syndrome ( OMIM 309583). This missense mutation, p.G56S, greatly reduces SMS activity and leads to severe epilepsy and cognitive impairment. Our findings contribute to a better delineation and expansion of the clinical spectrum of Snyder-Robinson syndrome, support the important role of the N-terminus in the function of the SMS protein, and provide further evidence for the importance of SMS activity in the development of intellectual processing and other aspects of human development.
Resumo:
A new gold(I) complex with 2-mercaptothiazoline (MTZ) with the coordination formula [AuCN(C(3)H(5)NS(2))] was synthesized and characterized by chemical and spectroscopic measurements, OFT studies and biological assays. Infrared (IR) and (1)H, (13)C and (15)N nuclear magnetic resonance (NMR) spectroscopic measurements indicate coordination of the ligand to gold(I) through the nitrogen atom. Studies based on OFT confirmed nitrogen coordination to gold(I) as a minimum of the potential energy surface with calculations of the hessians showing no imaginary frequencies. Thermal decomposition starts at temperatures near 160 degrees C, leading to the formation of Au as the final residue at 1000 degrees C. The gold(I) complex with 2-mercaptothiazoline (Au-MTZ) is soluble in dimethyl sulfoxide (DMSO), and is insoluble in water, methanol, ethanol, acetonitrile and hexane. The antibacterial activities of the Au-MTZ complex were evaluated by an antibiogram assay using the disc diffusion method. The compound showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive) and Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. Biological analysis for evaluation of the cytotoxic effect of the Au-MTZ complex was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented a potent cytotoxic activity, inducing 85% of cell death at a concentration of 2.0 mu mol L(-1). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We measured the oral and pharyngeal transit of a paste bolus in 20 patients with Chagas` disease and 21 controls. Each subject swallowed of a 10-ml paste bolus prepared with 50 ml of water and 4.5 g of instant food thickener labeled with 55.5 MBq of 99(m) technetium phytate. After the scintigraphic recording of the transit, we delineated regions of interest (ROI) corresponding to mouth, pharynx, and proximal esophagus. Time-activity curves were generated for each ROI. There was no difference between patients with Chagas` disease and controls with respect to the duration of oral and pharyngeal transit, amount of pharyngeal residue, or flux of bolus entry into the proximal esophagus. The amount of oral residue was higher in patients with Chagas` disease (median = 0.71 ml) than in controls (median = 0.45 ml). The pharyngeal clearance duration was longer in patients with Chagas` disease (median = 0.85 s) than in controls (median = 0.60 s). The oral transit duration of the patients with Chagas` disease and dysphagia (median = 0.55 s, n = 14) was shorter than the oral transit duration of chagasic patients without dysphagia (median = 0.80 s, n = 6). We conclude that when swallowing a paste bolus, patients with Chagas` disease may have an increased amount of oral residue and a longer pharyngeal clearance duration than asymptomatic volunteers.
Resumo:
Bothropstoxin-I (BthTx-I) is a homodimerie Lys49-PLA(2) from the venom of the snake Bothrops jararacussu, which lacks hydrolytic activity against phospholipid substrates, yet permeabilizes membranes by a Ca2+- independent mechanism. The interaction of the BthTx-I with model membranes has been studied by intrinsic tryptophan fluorescence emission (ITFE) spectroscopy. Nine separate mutants have been created each with a unique tryptophan residue located at a different position in the interfacial recognition site (IRS) of the protein. The rapid and efficient Ca2+-independent membrane damage against unilamellar liposomes composed of DPPC/DMPA in a 9:1 molar ratio was unaffected by these substitutions. Binding studies revealed low protein affinity for these liposomes and no changes were observed in the ITFE properties. In contrast, the binding of all mutants to DPPC/DMPA liposomes in a 1:1 molar ratio was stronger, and was correlated with altered ITFE properties. The blue-shifted emission spectra and increased emission intensity of mutants at positions 31, 67 and 115-117 in the interface recognition surface of the protein suggest these regions are partially inserted into the membrane. These results are consistent with a model for the Ca2+-independent membrane damaging mechanism that involves a transient interaction of the protein with the outer phospholipid leaflet of the target membrane. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
This study is the first in the literature to focus attention on the possible immunotoxic effect of integerrimine N-oxide content in the butanolic residue (BR) of Senecio brasiliensis, a poisonous hepatotoxic plant that contains pyrrolizidine alkaloids (PAs). PAs have been reported as a pasture and food contaminant and as herbal medicine used worldwide and are responsible for poisoning events in livestock and human beings. After the plant extraction, BR extracted from Senecio brasiliensis was found to contain approximately 70% integerrimine N-oxide by elemental and spectral analyses ((1)H and (13)C NMR), which was administered to adult male Wistar Hannover rats at doses of 3, 6 and 9 mg/kg for 28 days. Body weight gain, food consumption, lymphoid organs, neutrophil analysis, humoural immune response, cellular immune response and lymphocyte analysis were evaluated. Our study showed that integerrimine N-oxide could promote an impairment in the body weight gain, interference with blood cell counts and a reducing T cell proliferative activity in rats; however, no differences in the neutrophil activities, lymphocytes phenotyping and humoural and cellular immune responses were observed. It is concluded that doses of integerrimine N-oxide here employed did not produce marked immunotoxic effects. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
To evaluate the effect of oral rehabilitation with immediately loaded fixed implant-supported mandibular prostheses on chewing and swallowing in elderly individuals. Materials and Methods: Fifteen completely edentulous patients aged more than 60 years (10 women and five men), wearing removable dentures in both arches, had a mandibular denture replaced by an implant-supported prosthesis. All individuals were evaluated before surgery and again 3, 6, and 18 months later with regard to mastication and swallowing conditions. Examinations entailed an interview, evaluation of tactile sensitivity of the face, and observation of food intake, masticatory type, formations of bolus, and pain during mastication. The swallowing evaluation comprised observation of clinical signs related to the oral and pharyngeal stages of swallowing, as well as the presence of oral residue. The findings of different evaluations before and 3, 6, and 18 months after the surgical-prosthetic procedure were statistically compared by analysis of variance for repeated measurements at a significance level of 5%. Results: The questionnaire revealed a reduction in complaints of masticatory and swallowing disturbances, a decreased need for liquid ingestion, and reduced choking and coughing. Clinical evaluations showed improved oral function and bolus propulsion for both solid and paste-consistency foods; pain during mastication was also resolved. Conclusion: Treatment with mandibular implant-supported dentures had positive effects on the clinical aspects of mastication and swallowing in elderly individuals. INT J ORAL MAXILLOFAC IMPLANTS 2009; 24:110-117
Resumo:
Effect of processing on the antioxidant activity of amaranth grain. Amaranth has attracted increasing interest over recent decades because of its nutritional, functional and agricultural characteristics. Amaranth grain can be cooked, popped, toasted, extruded or milled for consumption. This study investigated the effect of these processes on the antioxidant activity of amaranth grain. Total phenolic content and in vitro antioxidant activity were determined according to two methods: inhibition, of lipid oxidation using the beta-carotene/linoleic acid system and the antioxidant activity index using the Rancimat (R) apparatus. The processing reduced the mean total phenolics content in amaranth grain from 31.7 to 22.0 mg of gallic acid equivalent/g of dry residue. It was observed that the ethanol extract from toasted grain was the only one that presented a lower antioxidant activity index compared with the raw grain (1.3 versus 1.7). The extrusion, toasting and popping processes did not change the capacity to inhibit amaranth lipid oxidation (55%). However, cooking increased the inhibition of lipid oxidation (79%), perhaps because of the longer time at high temperatures in this process (100 degrees C/10 min). The most common methods for processing amaranth grain caused reductions in the total phenolics content, although the antioxidant activity of popped and extruded grain, evaluated by the two methods, was similar to that of the raw grain. Both raw and processed amaranth grain presents antioxidant potential. Polyphenols, anthocyanins, flavonoids, tocopherols, vitamin C levels and Maillard reaction products may be related to the antioxidant activity of this grain.