146 resultados para Reproductive assisted techniques
Resumo:
The Z-scan and thermal-lens techniques have been used to obtain the energy transfer upconversion parameter in Nd(3+)-doped materials. A comparison between these methods is done, showing that they are independent and provide similar results. Moreover, the advantages and applicability of each one are also discussed. The results point to these approaches as valuable alternative methods because of their sensitivity, which allows measurements to be performed in a pump-power regime without causing damage to the investigated material. (C) 2009 Optical Society of America
Resumo:
A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) microvessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 mu L The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe. Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2(4-1) fractional factorial design: 650 W microwave power, 7 min digestion time, 50 mu L nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study, we described the frequency of attempted suicide among women of reproductive age (10 to 49 years) in a General University Hospital in Ribeirao Preto, Brazil (conducted 2005). Relevant comorbidities associated with the suicide attempt were calculated. Secondary data were obtained through the hospital`s records where attempted suicides were reported. Findings revealed 132 attempted suicides; most women took a toxic substance or their own medication. Half of the women previously had attempted suicide. Depression was the most frequent psychiatric diagnosis on discharge from the hospital, specifically borderline personality disorder, personality disorders axis B and depression without association.
Resumo:
Recently semi-empirical models to estimate flow boiling heat transfer coefficient, saturated CHF and pressure drop in micro-scale channels have been proposed. Most of the models were developed based on elongated bubbles and annular flows in the view of the fact that these flow patterns are predominant in smaller channels. In these models, the liquid film thickness plays an important role and such a fact emphasizes that the accurate measurement of the liquid film thickness is a key point to validate them. On the other hand, several techniques have been successfully applied to measure liquid film thicknesses during condensation and evaporation under macro-scale conditions. However, although this subject has been targeted by several leading laboratories around the world, it seems that there is no conclusive result describing a successful technique capable of measuring dynamic liquid film thickness during evaporation inside micro-scale round channels. This work presents a comprehensive literature review of the methods used to measure liquid film thickness in macro- and micro-scale systems. The methods are described and the main difficulties related to their use in micro-scale systems are identified. Based on this discussion, the most promising methods to measure dynamic liquid film thickness in micro-scale channels are identified. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this paper, the microbial characteristics of the granular sludge in the presence of oxygen (3.0 +/- 0.7 mg O-2 1(-1)) were analyzed using molecular biology techniques. The granules were provided by an upflow anaerobic sludge blanket (UASB) operated over 469 days and fed with synthetic substrate. Ethanol and sulfate were added to obtain different COD/SO42- ratios (3.0, 2.0, and 1.6). The results of fluorescent in situ hybridization (FISH) analyses showed that archaeal cells, detected by the ARC915 probe, accounted for 77%, 84%, and 75% in the COD/SO42- ratios (3.0, 2.0, and 1.6, respectively). Methanosaeta sp. was the predominant acetoclastic archaea observed by optical microscopy and FISH analyses, and confirmed by sequencing of the excised bands of the DGGE gel with a similarity of 96%. The sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris (similarity of 99%) was verified by sequencing of the DGGE band. Others identified microorganism were similar to Shewanella sp. and Desulfitobacterium hafniense, with similarities of 95% and 99%, respectively. These results confirmed that the presence of oxygen did not severely affect the metabolism of microorganisms that are commonly considered strictly anaerobic. We obtained mean efficiencies of organic matter conversion and sulfate reducing higher than 74%. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Most post-processors for boundary element (BE) analysis use an auxiliary domain mesh to display domain results, working against the profitable modelling process of a pure boundary discretization. This paper introduces a novel visualization technique which preserves the basic properties of the boundary element methods. The proposed algorithm does not require any domain discretization and is based on the direct and automatic identification of isolines. Another critical aspect of the visualization of domain results in BE analysis is the effort required to evaluate results in interior points. In order to tackle this issue, the present article also provides a comparison between the performance of two different BE formulations (conventional and hybrid). In addition, this paper presents an overview of the most common post-processing and visualization techniques in BE analysis, such as the classical algorithms of scan line and the interpolation over a domain discretization. The results presented herein show that the proposed algorithm offers a very high performance compared with other visualization procedures.
Resumo:
A two-dimensional numeric simulator is developed to predict the nonlinear, convective-reactive, oxygen mass exchange in a cross-flow hollow fiber blood oxygenator. The numeric simulator also calculates the carbon dioxide mass exchange, as hemoglobin affinity to oxygen is affected by the local pH value, which depends mostly on the local carbon dioxide content in blood. Blood pH calculation inside the oxygenator is made by the simultaneous solution of an equation that takes into account the blood buffering capacity and the classical Henderson-Hasselbach equation. The modeling of the mass transfer conductance in the blood comprises a global factor, which is a function of the Reynolds number, and a local factor, which takes into account the amount of oxygen reacted to hemoglobin. The simulator is calibrated against experimental data for an in-line fiber bundle. The results are: (i) the calibration process allows the precise determination of the mass transfer conductance for both oxygen and carbon dioxide; (ii) very alkaline pH values occur in the blood path at the gas inlet side of the fiber bundle; (iii) the parametric analysis of the effect of the blood base excess (BE) shows that V(CO2) is similar in the case of blood metabolic alkalosis, metabolic acidosis, or normal BE, for a similar blood inlet P(CO2), although the condition of metabolic alkalosis is the worst case, as the pH in the vicinity of the gas inlet is the most alkaline; (iv) the parametric analysis of the effect of the gas flow to blood flow ratio (Q(G)/Q(B)) shows that V(CO2) variation with the gas flow is almost linear up to Q(G)/Q(B) = 2.0. V(O2) is not affected by the gas flow as it was observed that by increasing the gas flow up to eight times, the V(O2) grows only 1%. The mass exchange of carbon dioxide uses the full length of the hollow-fiber only if Q(G)/Q(B) > 2.0, as it was observed that only in this condition does the local variation of pH and blood P(CO2) comprise the whole fiber bundle.
Resumo:
The purpose of this article is to study the application of the holographic interferometry techniques in the structural analysis of submarine environment. These techniques are widely used today, with applications in many areas. Nevertheless, its application in submarine environments presents some challenges. The application of two techniques, electronic speckle pattern interferometry (ESPI) and digital holography, comparison of advantages and disadvantages of each of them is presented. A brief study is done on the influence of water properties and the optical effects due to suspended particles as well as possible solutions to minimize these problems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the behavior of an AISI 410 martensitic stainless steel under corrosion-erosion conditions is evaluated. Quenched and tempered samples were used for the wear test, using a low velocity jet-like device connected to a potentiostat. Potentiodynamic polarization curves were obtained with the electrolyte in static state, with flow conditions and under corrosion-erosion, adding quartz particles to the electrolyte. In addition, mass loss measurements under erosion and corrosion-erosion conditions were carried out. The topography of the surfaces was examined after the wear tests, using optical and scanning electron microscopy. This information, together with the results of mass losses and the electrochemical tests were used to establish the degradation mechanisms of the stainless steels under different testing conditions. The results showed that synergism is a significant part of the degradation process of this steel (66.5%) and that the mass removal process of steel was controlled by corrosion assisted by erosion.
Resumo:
SKAN: Skin Scanner - System for Skin Cancer Detection Using Adaptive Techniques - combines computer engineering concepts with areas like dermatology and oncology. Its objective is to discern images of skin cancer, specifically melanoma, from others that show only common spots or other types of skin diseases, using image recognition. This work makes use of the ABCDE visual rule, which is often used by dermatologists for melanoma identification, to define which characteristics are analyzed by the software. It then applies various algorithms and techniques, including an ellipse-fitting algorithm, to extract and measure these characteristics and decide whether the spot is a melanoma or not. The achieved results are presented with special focus on the adaptive decision-making and its effect on the diagnosis. Finally, other applications of the software and its algorithms are presented.
Resumo:
The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Predatory mites identified as Neoseiulus paspalivorus DeLeon (Phytoseiidae) have been considered as agents for classical biological control of the coconut mite, Aceria guerreronis Keifer (Eriophyidae), in Africa and elsewhere. Preliminary identification of geographically distinct populations as belonging to the same species (N. paspalivorus) was based on their morphological similarity. However, laboratory studies recently conducted have shown large differences in feeding behaviors and biological characteristics among individuals collected from three geographic origins: Brazil (South America), Benin and Ghana (West Africa). As morphologically similar specimens do not necessarily belong to the same species, we evaluated under laboratory conditions, reproductive compatibility between the specimens from three geographic locations to ascertain their conspecificity. Morphological measurements were also made to determine whether there is a means of discriminating between them. Inter-population crosses showed complete reproductive isolation between the three geographic populations, but interpopulation discontinuities in morphometric characters were absent. These results indicate that the tested specimens are distinct biological entities despite morphological similarity. Further molecular genetic studies are therefore proposed, including screening for endosymbionts and assessment of genetic differentiation, to determine the cause of reproductive incompatibility and to clarify the taxonomic relationship between those populations.
Resumo:
Predatory behaviour and reproductive output of the ladybird beetle Stethorus tridens Gordon as function of the tomato red spider mite (TRSM), Tetranychus evansi Baker & Pritchard, densities was investigated in the laboratory. Adult female of S. tridens were isolated in cylindrical plastic arenas, containing a leaf disc of Solanum americanum Mill. with 5, 20, 40, 60, 80 or 100 T. evansi nymphs. The number of prey consumed and eggs laid were evaluated daily for ten consecutive days, starting at the oviposition. Oviposition of S. tridens was positively correlated with prey consumption and lower threshold prey consumption for S. tridens laying eggs was 16.3 mites per day. The instantaneous rate of attack (ca. discovery area) and the handling time were 0.0062 h(-1) and 0.83 h, and 0.00254 h(-1) and 0.78 h, respectively, for predators at the 1st- and 10th-oviposition day. The predator exhibited a type II functional response at 1st- and 10th-oviposition day with a maximum consumption per predator of 33 T. evansi nymphs per day at the highest prey density. The ladybird beetle S. tridens is often collected associated with red spider mite colonies on solanaceous wild plants and the results suggest the potential of this ladybird beetle to control T. evansi in tomatoes crops.
Resumo:
The etiological agent of maize white spot (MWS) disease has been a subject of controversy and discussion. Initially the disease was described as Phaeosphaeria leaf spot caused by Phaeosphaeria maydis. Other authors have Suggested the existence of different fungal species causing similar symptoms. Recently, a bacterium, Pantoea ananatis, was described as the causal agent of this disease. The purpose of this Study was to offer additional information on the correct etiology of this disease by providing visual evidence of the presence of the bacterium in the interior of the MWS lesions by using transmission electron microscopy (TEM) and molecular techniques. The TEM allowed Visualization of a large amount of bacteria in the intercellular spaces of lesions collected from both artificially and naturally infected plants. Fungal structures were not visualized in young lesions. Bacterial primers for the 16S rRNA and rpoB genes were used in PCR reactions to amplify DNA extracted from water-soaked (young) and necrotic lesions. The universal fungal oligonucleotide ITS4 was also included to identity the possible presence of fungal structures inside lesions. Positive PCR products from water-soaked lesions, both from naturally and artificially inoculated plants, were produced with bacterial primers, whereas no amplification was observed when ITS4 oligonucleotide was used. On the other hand, DNA amplification with ITS4 primer was observed when DNA was isolated from necrotic (old) lesions. These results reinforced previous report of P. ananatis as the primary pathogen and the hypothesis that fungal species may colonize lesions pre-established by P. ananatis.