122 resultados para Random regression
                                
Resumo:
We give reasons why demographic parameters such as survival and reproduction rates are often modelled well in stochastic population simulation using beta distributions. In practice, it is frequently expected that these parameters will be correlated, for example with survival rates for all age classes tending to be high or low in the same year. We therefore discuss a method for producing correlated beta random variables by transforming correlated normal random variables, and show how it can be applied in practice by means of a simple example. We also note how the same approach can be used to produce correlated uniform triangular, and exponential random variables. (C) 2008 Elsevier B.V. All rights reserved.
                                
Resumo:
This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.
                                
Resumo:
The zero-inflated negative binomial model is used to account for overdispersion detected in data that are initially analyzed under the zero-Inflated Poisson model A frequentist analysis a jackknife estimator and a non-parametric bootstrap for parameter estimation of zero-inflated negative binomial regression models are considered In addition an EM-type algorithm is developed for performing maximum likelihood estimation Then the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and some ways to perform global influence analysis are derived In order to study departures from the error assumption as well as the presence of outliers residual analysis based on the standardized Pearson residuals is discussed The relevance of the approach is illustrated with a real data set where It is shown that zero-inflated negative binomial regression models seems to fit the data better than the Poisson counterpart (C) 2010 Elsevier B V All rights reserved
                                
Resumo:
In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.
                                
Resumo:
Joint generalized linear models and double generalized linear models (DGLMs) were designed to model outcomes for which the variability can be explained using factors and/or covariates. When such factors operate, the usual normal regression models, which inherently exhibit constant variance, will under-represent variation in the data and hence may lead to erroneous inferences. For count and proportion data, such noise factors can generate a so-called overdispersion effect, and the use of binomial and Poisson models underestimates the variability and, consequently, incorrectly indicate significant effects. In this manuscript, we propose a DGLM from a Bayesian perspective, focusing on the case of proportion data, where the overdispersion can be modeled using a random effect that depends on some noise factors. The posterior joint density function was sampled using Monte Carlo Markov Chain algorithms, allowing inferences over the model parameters. An application to a data set on apple tissue culture is presented, for which it is shown that the Bayesian approach is quite feasible, even when limited prior information is available, thereby generating valuable insight for the researcher about its experimental results.
                                
Resumo:
We introduce the log-beta Weibull regression model based on the beta Weibull distribution (Famoye et al., 2005; Lee et al., 2007). We derive expansions for the moment generating function which do not depend on complicated functions. The new regression model represents a parametric family of models that includes as sub-models several widely known regression models that can be applied to censored survival data. We employ a frequentist analysis, a jackknife estimator, and a parametric bootstrap for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Further, for different parameter settings, sample sizes, and censoring percentages, several simulations are performed. In addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the proposed regression model applied to censored data. We define martingale and deviance residuals to evaluate the model assumptions. The extended regression model is very useful for the analysis of real data and could give more realistic fits than other special regression models.
                                
Resumo:
A cholesterol-rich nanoemulsion (LDE) that resembles LDL binds to the LDL receptors and after injection into the blood stream may concentrate in cells with LDL receptor overexpression, as occurs in neoplasias and other proliferative processes. Thus, LDE can be used as vehicle to target drugs against those cells. The current study was designed to verify in rabbits whether LDE concentrates in the lesioned rabbit artery and whether a paclitaxel derivative, paclitaxel oleate, associated to LDE could reduce the atherosclerotic lesions. Sixteen male New Zealand rabbits were fed a 1% cholesterol diet for 60 days. Starting from day 30 under cholesterol feeding, eight animals were treated with four weekly intravenous injections of LDE-paclitaxel (4 mg/kg) and eight with four weekly intravenous saline solution injections for additional 30 days. On day 60, the animals were sacrificed for analysis. The uptake of LDE labeled with [C-14]-cholesteryl oleate by the aortic arch of cholesterol-fed rabbits was twice as much that observed in animals fed only regular chow. LDE-paclitaxel reduced the lesion areas of cholesterol-fed animals by 60% and intima-media ratio fourfold and inhibited the macrophage migration and the smooth muscle cell proliferation and invasion of the intima. LDE-paclitaxel treatment had no toxicity. In conclusion, LDE-paclitaxel produced pronounced atherosclerosis regression without toxicity and has shown remarkable potential in cardiovascular therapeutics. (c) 2008 Published by Elsevier Ireland Ltd.
                                
Resumo:
Random walks can undergo transitions from normal diffusion to anomalous diffusion as some relevant parameter varies, for instance the L,vy index in L,vy flights. Here we derive the Fokker-Planck equation for a two-parameter family of non-Markovian random walks with amnestically induced persistence. We investigate two distinct transitions: one order parameter quantifies log-periodicity and discrete scale invariance in the first moment of the propagator, whereas the second order parameter, known as the Hurst exponent, describes the growth of the second moment. We report numerical and analytical results for six critical exponents, which together completely characterize the properties of the transitions. We find that the critical exponents related to the diffusion-superdiffusion transition are identical in the positive feedback and negative feedback branches of the critical line, even though the former leads to classical superdiffusion whereas the latter gives rise to log-periodic superdiffusion.
                                
Resumo:
This paper is part of a large study to assess the adequacy of the use of multivariate statistical techniques in theses and dissertations of some higher education institutions in the area of marketing with theme of consumer behavior from 1997 to 2006. The regression and conjoint analysis are focused on in this paper, two techniques with great potential of use in marketing studies. The objective of this study was to analyze whether the employement of these techniques suits the needs of the research problem presented in as well as to evaluate the level of success in meeting their premisses. Overall, the results suggest the need for more involvement of researchers in the verification of all the theoretical precepts of application of the techniques classified in the category of investigation of dependence among variables.
                                
Resumo:
The present study was carried out to evaluate the effectiveness of a specific program regarding the occurrence of vocal attrition symptoms in telemarketers. A total of 71 subjects participated in this study: 28 completed the Vocal Symptoms questionnaire to test its reliability, and 43 were randomly assigned to two groups: an 8-week vocal training group (n = 14) and a no-training control group (n = 29), to evaluate the effectiveness of the training program with this tool. The voice training group also filled in the posttraining questionnaire `Benefits Obtained with Voice Training` (BVT). The vocal training program was not considered effective with regard to the occurrence of vocal symptoms. However, due to a probable increase in symptoms in untrained telemarketers, it can work as a protective factor. According to BVT answers, the vocal training contributed to an improvement in vocal use as a communication tool for telemarketers. Copyright (C) 2009 S. Karger AG, Basel
                                
Resumo:
Degenerative aortic valve disease (DAVD), a common finding in the elderly, is associated with an increased risk of death due to cardiovascular causes. Taking advantage of its longitudinal design, this study evaluates the prevalence of DAVD and its temporal associations with long-term exposure to cardiovascular risk factors in the general population. We studied 953 subjects (aged 25-74 years) from a random sample of German residents. Risk factors had been determined at a baseline investigation in 1994/95. At a follow-up investigation, 10 years later, standardized echocardiography determined aortic valve morphology and aortic valve area (AVA) as well as left ventricular geometry and function. At the follow-up study, the overall prevalence of DAVD was 28%. In logistic regression models adjusting for traditional cardiovascular risk factors at baseline age (OR 2.0 [1.7-2.3] per 10 years, P < 0.001), active smoking (OR 1.7 [1.1-2.4], P = 0.009) and elevated total cholesterol levels (OR 1.2 [1.1-1.3] per increase of 20 mg/dL, P < 0.001) were significantly related to DAVD at follow-up. Furthermore, age, baseline status of smoking, and total cholesterol level were significant predictors of a smaller AVA at follow-up study. In contrast, hypertension and obesity had no detectable relationship with long-term changes of aortic valve structure. In the general population we observed a high prevalence of DAVD that is associated with long-term exposure to elevated cholesterol levels and active smoking. These findings strengthen the notion that smoking cessation and cholesterol lowering are promising treatment targets for prevention of DAVD.
                                
Resumo:
Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.
                                
Resumo:
Many features of chronic kidney disease may be reversed, but it is unclear whether advanced lesions, such as adhesions of sclerotic glomerular tufts to Bowman`s capsule (synechiae), can resolve during treatment. We previously showed, using a renal ablation model, that the renoprotective effect of the AT-1 receptor blocker, losartan, is dose-dependent. Here we determined if moderate and advanced glomerular lesions, associated with streptozotocin-induced diabetes, regress with conventional or high-dose losartan treatment. Using daily insulin injection for 10 months, we maintained diabetic adult male Munich-Wistar rats in a state of moderate hyperglycemia. Following this period, some rats continued to receive insulin with or without conventional or high-dose losartan for an additional 2 months. Diabetic rats pretreated with insulin for 10 months and age-matched non-diabetic rats served as controls. Mesangial expansion was found in the control diabetic rats and was exacerbated in those rats maintained on only insulin for an additional 2 months. Conventional and high-dose losartan treatments reduced this mesangial expansion and the severity of synechiae lesions below that found prior to treatment; however, the frequency of the latter was unchanged. There was no dose-response effect of losartan. Our results show that regression of mesangial expansion and contraction of sclerotic lesions is feasible in the treatment of diabetes, but complete resolution of advanced glomerulosclerosis may be hard to achieve.
                                
Resumo:
There is evidence that fibroblast growth factors (FGFs) are involved in the regulation of growth and regression of the corpus luteum (CL). However, the expression pattern of most FGF receptors (FGFRs) during CL lifespan is still unknown. The objective of the present study was to determine the pattern of expression of `B` and `C` splice variants of FGFRs in the bovine CL. Bovine CL were collected from an abattoir and classed as corpora hemorrhagica (Stage I), developing (Stage II), developed (Stage III) or regressed (Stage IV) CL. Expression of FGFR mRNA was measured by semiquantitative reverse transcription-polymerase chain reaction and FGFR protein was localised by immunohistochemistry. Expression of mRNA encoding the `B` and `C` spliced forms of FGFR1 and FGFR2 was readily detectable in the bovine CL and was accompanied by protein localisation. FGFR1C and FGFR2C mRNA expression did not vary throughout CL lifespan, whereas FGFR1B was upregulated in the developed (Stage III) CL. FGFR3B, FGFR3C and FGFR4 expression was inconsistent in the bovine CL. The present data indicate that FGFR1 and FGFR2 splice variants are the main receptors for FGF action in the bovine CL.
                                
Resumo:
Background. Dental erosion is a multifactorial disease and is associated with dietary habits in infancy and adolescence. Aim. To investigate possible associations among dental erosion and diet, medical history and lifestyle habits in Brazilian schoolchildren. Design. The sample consisted of a random single centre cluster of 414 adolescents (12- and 16-years old) of both genders from private and public schools in Bauru (Brazil). The O`Brien [Children`s Dental Health in the United Kingdom, 1993 (1994) HMSO, London] index was used for dental erosion assessment. Data on medical history, rate and frequency of food and drinks consumption, and lifestyle habits were collected by a self-reported questionnaire. Odds ratios with 95% confidence intervals were used to assess the univariate relationships between variables. Analysis of questionnaire items was performed by multiple logistic regression analysis. The statistical significance level was set at 5%. Results. The erosion present group comprised 83 subjects and the erosion absent group 331. There were no statistically significant correlations among dental erosion and the consumption of food and drinks, medical history, or lifestyle habits. Conclusion. The results indicate that there was no correlation between dental erosion and the risk factors analysed among adolescents in Bauru/Brazil and further investigations are necessary to clarify the multifactorial etiology of this condition.