50 resultados para RED PHOSPHOR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium falciparum, the most important etiological agent of human malaria, is endowed with a highly complex cell cycle that is essential for its successful replication within the host. A number of evidence suggest that changes in parasite Ca(2+) levels occur during the intracellular cycle of the parasites and play a role in modulating its functions within the RBC. However, the molecular identification of Plasmodium receptors linked with calcium signalling and the causal relationship between Ca(2+) increases and parasite functions are still largely mysterious. We here describe that increases in P. falciparum Ca(2+) levels, induced by extracellular ATP, modulate parasite invasion. In particular, we show that addition of ATP leads to an increase of cytosolic Ca(2+) in trophozoites and segmented schizonts. Addition of the compounds KN62 and Ip5I on parasites blocked the ATP-induced rise in [Ca(2+)](c). Besides, the compounds or hydrolysis of ATP with apyrase added in culture drastically reduce RBC infection by parasites, suggesting strongly a role of extracellular ATP during RBC invasion. The use of purinoceptor antagonists Ip5I and KN62 in this study suggests the presence of putative purinoceptor in P. falciparum. In conclusion, we have demonstrated that increases in [Ca(2+)](c) in the malarial parasite P. falciparum by ATP leads to the modulation of its invasion of red blood cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IP(3)-dependent Ca(2+) signaling controls a myriad of cellular processes in higher eukaryotes and similar signaling pathways are evolutionarily conserved in Plasmodium, the intracellular parasite that causes malaria. We have reported that isolated, permeabilized Plasmodium chabaudi, releases Ca(2+) upon addition of exogenous IP(3). In the present study, we investigated whether the IP(3) signaling pathway operates in intact Plasmodium falciparum, the major disease-causing human malaria parasite. P. falciparum-infected red blood cells (RBCs) in the trophozoite stage were simultaneously loaded with the Ca(2+) indicator Fluo-4/AM and caged-IP(3). Photolytic release of IP(3) elicited a transient Ca(2+) increase in the cytosol of the intact parasite within the RBC. The intracellular Ca(2+) pools of the parasite were selectively discharged, using thapsigargin to deplete endoplasmic reticulum (ER) Ca(2+) and the antimalarial chloroquine to deplete Ca(2+) from acidocalcisomes. These data show that the ER is the major IP(3)-sensitive Ca(2+) store. Previous work has shown that the human host hormone melatonin regulates P. falciparum cell cycle via a Ca(2+)-dependent pathway. In the present study, we demonstrate that melatonin increases inositol-polyphosphate production in intact intraerythrocytic parasite. Moreover, the Ca(2+) responses to melatonin and uncaging of IP(3) were mutually exclusive in infected RBCs. Taken together these data provide evidence that melatonin activates PLC to generate IP(3) and open ER-localized IP(3)-sensitive Ca(2+) channels in P. falciparum. This receptor signaling pathway is likely to be involved in the regulation and synchronization of parasite cell cycle progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular traffic of haem during the development of the human malaria parasite Plasmodium falciparum, through the stages R (ring), T (trophozoite) and S (schizonts), was investigated within RBC (red blood cells). When Plasmodium cultures were incubated with a fluorescent haem analogue, ZnPPIX (Zn protoporphyrin IX) the probe was seen at the cytoplasm (R stage), and the vesicle-like structure distribution pattern was more evident at T and S stages. The temporal sequence of ZnPPIX uptake by P. falciparum-infected erythrocytes shows that at R and S stages, a time-increase acquisition of the porphyrin reaches the maximum fluorescence distribution after 60 min; in contrast, at the T stage, the maximum occurs after 120 min of ZnPPIX uptake. The difference in time-increase acquisition of the porphyrin is in agreement with a maximum activity of haem uptake at the T stage. To gain insights into haem metabolism, recombinant PfHO (P. falciparum haem oxygenase) was expressed, and the conversion of haem into BV (biliverdin) was detected. These findings point out that, in addition to haemozoin formation, the malaria parasite P. falciparum has evolved two distinct mechanisms for dealing with haem toxicity, namely, the uptake of haem into a cellular compartment where haemozoin is formed and HO activity. However, the low Plasmodium HO activity detected reveals that the enzyme appears to be a very inefficient way to scavenge the haem compared with the Plasmodium ability to uptake the haem analogue ZnPPIX and delivering it to the food vacuole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammatory cytokines such as interieukin-1 beta (IL-1 beta) are involved in the pathogenesis of periodontal diseases. A high individual variation in the levels of IL-10 mRNA has been verified, which is possibly determined by genetic polymorphisms and/or by the presence of periodontopathogens such as Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Aggregatibacter actinomycetemcomitans. In this study, we investigated the role of an IL-10 promoter single-nucleotide polymorphism at position 3954 [IL-1 beta(3954) SNP] and the presence of the periodontopathogens in the determination of the IL-1 beta levels in the periodontal tissues of nonsmoking chronic periodontitis (CP) patients (n = 117) and control (C) subjects in = 175) and the possible correlations with the clinical parameters of the disease. IL-1 beta(3954) SNP was investigated by restriction fragment length polymorphism, while the IL-1 beta levels and the presence of the periodontopathogens were determined by real-time PCR. Similar frequencies of IL-1 beta(3954) SNP were found in the C and CP groups, in spite of a trend toward a higher incidence of T alleles in the CP group. The IL-1 beta (3954) SNP CT and TT genotypes, as well as P. gingivalis, T. forsythia, and T. denticola, were associated with higher IL-1 beta levels and with higher values of the clinical parameters of disease severity. Concomitant analyses demonstrate that IL-1 beta(3954) and the red complex periodontopathogens were found to independently and additively modulate the levels of IL-1 beta in periodontal tissues. Similarly, the concurrent presence of both factors was associated with increased scores of disease severity. IL-1 beta(3954) genotypes and red complex periodontopathogens, individually and additively, modulate the levels of IL-1 beta in the diseased tissues of nonsmoking CP patients and, consequently, are potentially involved in the determination of the disease outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Objective: Inflammatory cytokines such as tumor necrosis factor-alpha are involved in the pathogenesis of periodontal diseases. A high between-subject variation in the level of tumor necrosis factor-alpha mRNA has been verified, which may be a result of genetic polymorphisms and/or the presence of periodontopathogens such as Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola (called the red complex) and Aggregatibacter actinomycetemcomitans. In this study, we investigated the effect of the tumor necrosis factor-alpha (TNFA) -308G/A gene polymorphism and of periodontopathogens on the tumor necrosis factor-alpha levels in the periodontal tissues of nonsmoking patients with chronic periodontitis (n = 127) and in control subjects (n = 177). Material and Methods: The TNFA-308G/A single nucleotide polymorphism was investigated using polymerase chain reaction-restriction fragment length polymorphism analysis, whereas the tumor necrosis factor-alpha levels and the periodontopathogen load were determined using real-time polymerase chain reaction. Results: No statistically significant differences were found in the frequency of the TNFA-308 single nucleotide polymorphism in control and chronic periodontitis groups, in spite of the higher frequency of the A allele in the chronic periodontitis group. The concomitant analyses of genotypes and periodontopathogens demonstrated that TNFA-308 GA/AA genotypes and the red-complex periodontopathogens were independently associated with increased levels of tumor necrosis factor-alpha in periodontal tissues, and no additive effect was seen when both factors were present. P. gingivalis, T. forsythia and T. denticola counts were positively correlated with the level of tumor necrosis factor-alpha. TNFA-308 genotypes were not associated with the periodontopathogen detection odds or with the bacterial load. Conclusion: Our results demonstrate that the TNFA-308 A allele and red-complex periodontopathogens are independently associated with increased levels of tumor necrosis factor-alpha in diseased tissues of nonsmoking chronic periodontitis patients and consequently are potentially involved in determining the disease outcome.