67 resultados para Potassium channels
Resumo:
The synthesis of potassium 2-substituted-1,3-dithianotrifluoroborate salts and tetra-n-butyl ammonium derivatives is described. The reaction proceeds under mild reaction conditions and the corresponding products were obtained in moderate to good yields. The reactivity of these compounds in rections with chiral cyclic N-acyliminium ions was evaluated.
Resumo:
The Suzuki-Miyaura cross-coupling reaction of 2-(butyltellanyl) or 2,5-bis-(butyltellanyl)furans and thiophenes with potassium aryltrifluoroborate salts catalyzed by palladium afforded 2-aryl- or 2,5-diaryl-furans and thiophenes in moderate to good yields.
Resumo:
The blue crab, Callinectes danae, tolerates exposure to a wide salinity range employing mechanisms of compensatory ion uptake when in dilute media. Although the gill (Na(+), K(+))-ATPase is vital to hyperosmoregulatory ability, the interactions occurring at the sites of ATP binding on the molecule itself are unknown. Here, we investigate the modulation by Na(+) and K(+) of homotropic interactions between the ATP-binding sites, and of phosphoenzyme formation of the (Na(+),K(+))-ATPase from the posterior gills of this euryhaline crab. The contribution of the high- and low-affinity ATP-binding sites to maximum velocity was similar for both Na(+) and K(+). However, in contrast to Na(+), a threshold K(+) concentration triggers the appearance of the high-affinity binding sites, displacing the saturation curve to lower ATP concentrations. Further, a low-affinity site for phosphorylation is present on the enzyme. These findings reveal notable differences in the catalytic mechanism of the crustacean (Na(+),K(+))-ATPase compared to the vertebrate enzyme. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Introduction. Lung tranplantation, a consolidated treatment for end-stage lung disease, utilizes preservation solutions, such as low potassium dextran (LPD), to mitigate ischemia reperfusion injury. We sought the local development of LPD solutions in an attempt to facilitate access and enhance usage. We also sought to evaluate the effectiveness of a locally manufactured LPD solution in a rat model of ex vivo lung perfusion. Methods. We randomized the following groups \?\adult of male Wistar rats (n = 25 each): Perfadex (LPD; Vitro life, Sweden); locally manufactured LPD-glucose (LPDnac) (Farmoterapica, Brazil), and normal saline solution (SAL) with 3 ischemic times (6, 12, and 24 hours). The harvested heart lung blocks were flushed with solution at 4 C. After storage, the blocks were connected to an IL-2 Isolated Perfused Rat or Guinea Pig Lung System (Harvard Apparatus) and reperfused with homologous blood for 60 minutes. Respiratory mechanics, pulmonary artery pressure, perfusate blood gas analysis, and lung weight were measured at 10-minute intervals. Comparisons between groups and among ischemic times were performed using analysis of variance with a 5% level of significance. Results. Lungs preserved for 24 hours were nonviable and therefore excluded from the analysis. Those preserved for 6 hours showed better ventilatory mechanics when compared with 12 hours. The oxygenation capacity was not different between lungs flushed with LPD or LPDnac, regardless of the ischemic time. SAL lungs showed higher PCO(2) values than the other solutions. Lung weight increased over time during perfusion; however, there were no significant differences among the tested solutions (LPD, P = .23; LPDnac, P = .41; SAL, P = .26). We concluded that the LPDnac solution results in gas exchange were comparable to the original LPD (Perfadex); however ventilatory mechanics and edema formation were better with LPD, particularly among lungs undergoing 6 hours of cold ischemia.
Resumo:
The endocannabinoid anandamide is a possible agonist at the Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel, in addition to its agonist activity at cannabinoid type 1 (CB1) receptor. In the midbrain dorsolateral periaqueductal gray (dlPAC) our previous data showed that CB1 activation induces anxiolytic-like effects. However, the rote of TRPV1 has remained unclear. Thus, in the present study we tested the hypothesis that this channel would contribute to the modulation of anxiety-like behaviour in the dlPAG. Mate Wistar rats received local injections of the TRPV1 antagonist capsazepine (10-60 nmol) and were submitted to the elevated plus-maze (EPM) and to the Vogel test. In addition, animals received local injections of capsaicin (0.01-1nmol), a TRPV1 agonist, and were tested in the same models. In accordance with our hypothesis, capsazepine produced anxiolytic-like effects both in the EPM and in the Vogel test. Capsaicin mimicked these results, which might be attributed to its ability to quickly desensitize the channel. Altogether, our data suggest that, while CB1 receptors seem to inhibit aversive responses in the dlPAG, TRPV1 could facilitate them. Thus, CB1 and TRPV1 may have opposite functions in modulating anxiety-like behaviour in this region. (C) 2008 Elsevier B.V. and ECNP. All rights reserved.
Resumo:
Hydrogen Sulfide (H2S) is an endogenous gas involved in several biological functions, including modulation of nociception. However, the mechanisms involved in such modulation are not fully elucidated. The present Study demonstrated that the pretreatment of mice with PAG, a H2S synthesis inhibitor, reduced LPS-induced mechanical paw hypernociception. This inhibition of hypernociception was associated with the prevention of neutrophil recruitment to the plantar tissue. Conversely, PAG had no effect on LPS-induced production of the hypernociceptive cytokines, TNF-alpha, IL-1 beta and CXCL1/KC and on hypernociception induced by PGE(2), a directly acting hypernociceptive mediator. In contrast with the pro-nociceptive role of endogenous H2S. systemic administration of NaHS, a H2S donor, reduced LPS-induced mechanical hypernociception in mice. Moreover, this treatment inhibited mechanical hypernociception induced by PGE(2), suggesting a direct effect of H2S on nociceptive neurons. The antinociceptive mechanism of exogenous H2S depends on K-(ATP)(+) channels since the inhibition of PGE(2) hypernociception by NaHS was prevented by glibenclamide (K-(ATP)(+) channel blocker). Finally, NaHS did not alter the thermal nociceptive threshold in the hot-plate test, confirming that its effect is mainly peripheral. Taken together, these results suggest that H2S has a dual role in inflammatory hypernociception: 1. an endogenous pro-nociceptive effect due to up-regulation of neutrophil migration. and 2. an antinociceptive effect by direct blockade of nociceptor sensitization modulating K-(ATP)(+) channels. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study assessed the effect of the agonist 15d-PGJ(2) administered into the rat temporomandibular joint (TMJ) on nociceptive behavioral and the anti-inflammatory potential of this prostaglandin on TMJ. It was observed that 15-deoxy-(Delta 12,14)-prostaglandin J(2) (15d-PGJ(2)) significantly reduced formalin-induced nociceptive behavior in a dose dependent manner, however injection of 15d-PGJ(2) into the contralateral TMJ failed to reduce such effects. This antinociceptive effect is dependent on peroxisome proliferator-activated receptors-gamma (PPAR-gamma) since pre-treatment with GW9662 (PPAR-gamma receptor antagonist) blocked the antinociceptive effect of 15d-PGJ(2) in the TMJ. In addition, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone suggesting the involvement of peripheral opioids in the process. Confirming this hypothesis pre-treatment with kappa, delta, but not mu receptor antagonists significantly reduced the antinociceptive effect of 15d-PGJ(2) in the TMJ. Similarly to opioid agonists, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide (NO)/guanilate cyclase (cGMP)/ATP-sensitive potassium channel blocker(K(ATP)(+)) channel pathway since it was prevented by the pre-treatment with the inhibitors of nitric oxide synthase (NOS; aminoguanidine), cGMP (ODQ), or the K(ATP)(+) (glibenclamide). In addition, 15d-PGJ(2) (100 ng/TMJ) inhibits 5-HT-induced TMJ hypernociception. Besides, TMJ treated with 15d-PGJ(2) showed lower vascular permeability, assessed by Evan`s Blue extravasation, and also lower neutrophil migration induced by carrageenan administration. Taken together, these results demonstrate that 15d-PGJ(2) has a potential peripheral antinociceptive and anti-inflammatory effect in the TMJ via PPAR-gamma activation. The results also suggest that 15d-PGJ(2) induced-peripheral antinociceptive response in the TMJ is mediated by kappa/delta opioid receptors by the activation of the intracellular L-arginine/NO/cGMP/K(ATP)(+) channel pathway. The pharmacological properties of the peripheral administration of 15d-PGJ(2) highlight the potential use of this PPAR-gamma agonist on TMJ inflammatory pain conditions. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The endocannabinoid anandamide, in addition to activating cannabinoid type 1 receptors (CB1), may act as an agonist at transient receptor potential vanilloid type 1 (TRPV1) channels. In the periaqueductal gray, CB1 activation inhibits, whereas TRPV1 increases, anxiety-like behavior. In the medial prefrontal cortex (mPFC), another brain region related to defensive responses, CB1 activation induces anxiolytic-like effects. However, a possible involvement of TRPV1 is still unclear. In the present study, we tested the hypothesis that TRPV1 channel contributes to the modulation of anxiety-like behavior in the mPFC. Male Wistar rats (n = 5-7 per group) received microinjections of the TRPV1 antagonist capsazepine (1-60 nmol) in the ventral portion of the mPFC and were exposed to the elevated plus maze (EPM) or to the Vogel conflict test. Capsazepine increased exploration of open arms in the EPM as well as the number of punished licks in the Vogel conflict test, suggesting anxiolytic-like effects. No changes in the number of entries into the enclosed arms were observed in the EPM, indicating that there were no changes in motor activity. Moreover, capsazepine did not interfere with water consumption or nociceptive threshold, discarding potential confounding factors for the Vogel conflict test. These data suggest that TRPV1 in the ventral mPFC tonically inhibits anxiety-like behavior. TRPV1 could facilitate defensive responses opposing, therefore, the anxiolytic-like effects reported after local activation of CB1 receptors.
Resumo:
Neuropathic pain is a chronic disease resulting from dysfunction of the nervous system often due to peripheral nerve injury. Hypersensitivity to sensory Stimuli (mechanical, thermal or chemical) is a common source of pain in patients and ion channels involved in detecting these Stimuli are possible candidates for inducing and/or maintaining the pain. Transient receptor potential (TRP) channels expressed on nociceptors respond to different sensory stimuli and a few of them have been studied previously in the models of neuropathic pain. Using real-time PCR for quantification of all known TRP channels we identified several TRP channels, which have not been associated with nociception OF neuropathic pain before, to be expressed in the DRG and to be differentially regulated after spared nerve injury (SNI). Of all TRP channel members, TRPML3 showed the most dramatic change in animals exhibiting neuropathic pain behaviour compared to control animals. fit situ hybridisation showed a widespread increase of expression ill neurons of small, medium and large cell sizes, indicating expression ill multiple subtypes. Co-localisation of TRPML3 with CGRP, NF200 and IB4 staining confirmed a broad Subtype distribution. Expression studies during development showed that TRPML3 is all embryonic channel that is induced upon nerve injury in three different nerve injury models investigated. Thus. the current results link for the first time a re-expression of TRPML3 with the development of neuropathic pain conditions. In addition, decreased mRNA levels after SNI were seen for TRPM6, TRPM8, TRPV1, TRPA1, TRPC3, TRPC4 and TRPC5. (C) 2009 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Production and secretion of testosterone in Leydig cells are mainly controlled by the luteinizing hormone (LH). Biochemical evidences suggest that the activity of Cl(-) ions can modulate the steroidogenic process, but the specific ion channels involved are not known. Here, we extend the characterization of Cl(-) channels in mice Leydig cells (50-60 days old) by describing volume- activated Cl(-) currents (I(Cl,swell)). The amplitude of I(Cl,swell) is dependent on the osmotic gradient across the cell membrane, with an apparent EC(50) of similar to 75 mOsm. These currents display the typical biophysical signature of volume- activated anion channels (VRAC): dependence on intracellular ATP, outward rectification, inactivation at positive potentials, and selectivity sequence (I(-)>Cl(-)>F(-)). Staurosporine (200 nM) did not block the activation of I(Cl), swell. The block induced by 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB; 128 mu M), SITS (200 mu M), ATP (500 mu M), pyridoxalphosphate-6- azophenyl-2`,4`-disulfonate (PPADS; 100 mu M), and Suramin (10 mu M) were described by the permeant blocker model with apparent dissociation constant at 0 mV K(d)(0) and fractional distance of the binding site (delta) of 334 mu M and 47%, 880 mu M and 35%, 2,100 mu M and 49%, 188 mu M and 27%, and 66.5 mu M and 49%, respectively. These numbers were derived from the peak value of the currents. We conclude that ICl, swell in Leydig cells are activated independently of purinergic stimulation, that Suramin and PPADS block these currents by a direct interaction with VRAC and that ATP is able to permeate this channel.
Resumo:
In the present work the distribution of ions in aboveground plant parts was studied in order to establish the suitability of using radiocaesium as a tracer for the plant absorption of nutrients, such as potassium (K(+)) and ammonium (NH(4)(+)). We present the results for the distributions of (137)Cs, (40)K and NH(4)(+) from four tropical plant species: lemon (Citrus aurantifolia), orange (Citrus sinensis), guava (Psidium guajava) and chili pepper (Capsicum frutescens). Activity concentrations of (137)Cs and (40)K were measured by gamma spectrometry and concentrations of free NH(4)(+) ions by a colorimetric method. Similarly to potassium and ammonium, caesium showed a high mobility within the plants, exhibiting the highest values of concentration in the growing parts of the tree (fruits, new leaves, twigs, and barks). A significant correlation between activity concentrations of (137)Cs and (40)K was observed in these tropical plants. The K/Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting that caesium could be a good tracer for (40)K in tropical woody fruit species. Despite the similarity observed for the behaviour of caesium and ammonium in the newly grown plant compartments, (137)Cs was not well correlated with NH(4)(+). Significant temporal changes in the NH(4)(+) concentrations were observed during the development of fruits, while the (137)Cs activity concentration alterations were not of great importance, indicating, therefore, that Cs(+) and free NH(4)(+) ions could have distinct concentration ratios for each particular plant organ. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In contrast to the many studies on the venoms of scorpions, spiders, snakes and cone snails, tip to now there has been no report of the proteomic analysis of sea anemones venoms. In this work we report for the first time the peptide mass fingerprint and some novel peptides in the neurotoxic fraction (Fr III) of the sea anemone Bunodosoma cangicum venom. Fr III is neurotoxic to crabs and was purified by rp-HPLC in a C-18 column, yielding 41 fractions. By checking their molecular masses by ESI-Q-Tof and MALDI-Tof MS we found 81 components ranging from near 250 amu to approximately 6000 amu. Some of the peptidic molecules were partially sequenced through the automated Edman technique. Three of them are peptides with near 4500 amu belonging to the class of the BcIV, BDS-I, BDS-II, APETx1, APETx2 and Am-II toxins. Another three peptides represent a novel group of toxins (similar to 3200 amu). A further three molecules (similar to similar to 4900 amu) belong to the group of type 1 sodium channel neurotoxins. When assayed over the crab leg nerve compound action potentials, one of the BcIV- and APETx-like peptides exhibits an action similar to the type 1 sodium channel toxins in this preparation, suggesting the same target in this assay. On the other hand one of the novel peptides, with 3176 amu, displayed an action similar to potassium channel blockage in this experiment. In summary, the proteomic analysis and mass fingerprint of fractions from sea anemone venoms through MS are valuable tools, allowing us to rapidly predict the occurrence of different groups of toxins and facilitating the search and characterization of novel molecules without the need of full characterization of individual components by broader assays and bioassay-guided purifications. It also shows that sea anemones employ dozens of components for prey capture and defense. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Hemiancistrus pankimpuju, new species, and Panaque bathyphilus, new species, are described from the main channel of the upper (Maranon) and middle (Solimoes)Amazon River, respectively. Both species are diagnosed by having a nearly white body, long filamentous extensions of both simple caudal-fin rays, small eyes, absence of an iris operculum and unique combinations of morphometrics. The coloration and morphology of these species, unique within Loricariidae, are hypothesized to be apomorphies associated with life in the dark, turbid depths of the Amazon mainstem. Extreme elongation of the caudal filaments in these and a variety of other main channel catfishes is hypothesized to have a mechanosensory function associated with predator detection.
Resumo:
Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. The cytosolic calcium is elevated in pinealocytes following alpha(1)-adrenergic stimulation, through IP3-and membrane calcium channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities. Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction of scrotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVE The aim of the study was to elucidate the cellular mechanism underlying the suppression of glucose-induced insulin secretion in mice fed a high-fat diet (HFD) for 15 weeks. RESEARCH DESIGN AND METHODS-C57BL6J mice were fed a HFD or a normal diet (ND) for 3 or 15 weeks. Plasma insulin and glucose levels in vivo were assessed by intraperitoneal glucose tolerance test. Insulin secretion in vitro was studied using static incubations and a perfused pancreas preparation. Membrane currents, electrical activity, and exocytosis were examined by patch-clamp technique measurements. Intracellular calcium concentration ([Ca(2+)](i)) was measured by microfluorimetry. Total internal reflection fluorescence microscope (TIRFM) was used for optical imaging of exocytosis and submembrane depolarization-evoked [Ca(2+)](i). The functional data were complemented by analyses of histology and gene transcription. RESULTS After 15 weeks, but not 3 weeks, mice on HFD exhibited hyperglycemia and hypoinsulinemia. Pancreatic islet content and beta-cell area increased 2- and 1.5-fold, respectively. These changes correlated with a 20-50% reduction of glucose-induced insulin secretion (normalized to insulin content). The latter effect was not associated with impaired electrical activity or [Ca(2+)](i) signaling. Single-cell capacitance and TIRFM measurements of exocytosis revealed a selective suppression (>70%) of exocytosis elicited by short (50 ms) depolarization, whereas the responses to longer depolarizations were (500 ms) less affected. The loss of rapid exocytosis correlated with dispersion of Ca(2+) entry in HFD beta-cells. No changes in gene transcription of key exocytotic protein were observed. CONCLUSIONS HFD results in reduced insulin secretion by causing the functional dissociation of voltage-gated Ca(2+) entry from exocytosis. These observations suggest a novel explanation to the well-established link between obesity and diabetes. Diabetes 59:1192-1201, 2010