208 resultados para Peritoneal cancer
Resumo:
The peritoneal cavity (PerC) is a unique compartment within which a variety of immune cells reside, and from which macrophages (Mempty set) are commonly drawn for functional studies. Here we define two Mempty set subsets that coexist in PerC in adult mice. One, provisionally called the large peritoneal Mempty set (LPM), contains approximately 90% of the PerC Mempty set in unstimulated animals but disappears rapidly from PerC following lipopolysaccharide (LPS) or thioglycolate stimulation. These cells express high levels of the canonical Mempty set surface markers, CD11b and F4/80. The second subset, referred to as small peritoneal Mempty set (SPM), expresses substantially lower levels of CD11b and F4/80 but expresses high levels of MHC-II, which is not expressed on LPM. SPM, which predominates in PerC after LPS or thioglycolate stimulation, does not derive from LPM. Instead, it derives from blood monocytes that rapidly enter the PerC after stimulation and differentiate to mature SPM within 2 to 4 d. Both subsets show clear phagocytic activity and both produce nitric oxide (NO) in response to LPS stimulation in vivo. However, their responses to LPS show key differences: in vitro, LPS stimulates LPM, but not SPM, to produce NO; in vivo, LPS stimulates both subsets to produce NO, albeit with different response patterns. These findings extend current models of Mempty set heterogeneity and shed new light on PerC Mempty set diversity, development, and function. Thus, they introduce a new context for interpreting (and reinterpreting) data from ex vivo studies with PerC Mempty set.
Resumo:
A lipidic nanoemulsion termed LDE concentrates in neoplastic cells after injection into the bloodstream and thus can be used as a drug carrier to tumour sites. The chemotherapeutic agent daunorubicin associates poorly with LDE; the aim of this study was to clarify whether the derivatization of daunorubicin by the attachment of an oleyl group increases the association with LDE, and to test the cytotoxicity and animal toxicity of the new preparation. The association of oleyl-daunorubicin (oDNR) to LDE showed high yield (93 +/- 2% and 84 +/- 4% at 1:10 and 1:5 drug:lipid mass, respectively) and was stable for at least 20 days. Association with oDNR increased the LDE particle diameter from 42 +/- 4 nm to 75 +/- 6 nm. Cytotoxicity of LDE-oDNR was reduced two-fold in HL-60 and K-562 cell lines, fourteen-fold in B16 cells and nine-fold in L1210 cells when compared with commercial daunorubicin. When tested in mice, LDE-oDNR showed remarkable reduced toxicity (maximum tolerated dose > 253 mu mol kg(-1), compared with <3 mu mol kg(-1) for commercial daunorubicin). At high doses, the cardiac tissue of LDE-oDNR-treated animals had much smaller structural lesions than with commercial daunorubicin. LDE-oDNR is therefore a promising new preparation that may offer superior tolerability compared with commercial daunorubicin.
Resumo:
Infants who are breast-fed have been shown to have a lower incidence of certain infectious diseases compared with formula-fed infants. Glutamine is one of the most abundant amino acids found in maternal milk and it is essential for the function of immune system cells such as macrophages. The purpose of this study was to investigate the effect of glutamine supplementation on the function of peritoneal macrophages and on hemopoiesis in early-weaned mice inoculated with Mycobacterium bovis bacillus Calmette-Guerin (BCG). Mice were wearied at 14 d of age and distributed to 2 groups and fed either a glutamine-free diet (n = 16) or a glutamine-supplemented diet (+Gln (n = 16). Both diets were isonitrogenous (with addition of a mixture of nonessential amino acids) and isocaloric. At d 21, 2 subgroups of mice (n = 16) were intraperitoneally injected with BCG and all mice were killed at d 28. Plasma, muscle and liver glutamine concentrations and muscle glutamine synthetase activity were not affected by diet or inoculation with BCG. The +GIn diet led to increased leukocyte and lymphocyte counts in the peripheral blood (P < 0.05) and granulocyte and lymphocyte counts in the bone marrow and spleen (P < 0.05). The +GIn diet increased spreading and adhesion capacities, hydrogen peroxide, nitric oxide, and tumor necrosis factor-alpha (TNF alpha) syntheses and the phagocytic and fungicidal activity of peritoneal macrophages (P < 0.05). The interaction between the +GIn diet and BCG inoculation increased the area under the curve of interleukin (IL)-1 beta and TNF alpha syntheses (P < 0.05). In conclusion, the intake of glutamine increases the function of peritoneal macrophages and hemopoiesis in early-weaned and BCG-inoculated mice. These data have important implications for the design of breast milk substitutes for human infants.
Resumo:
Introduction: Zinc deficiency has been associated with damage and oxidative changes in DNA that may increase an individual`s risk of cancer. Furthermore, zinc metabolism may be affected in cancer patients, leading to alterations in its distribution that would favor carcinogenesis. Plasma and erythrocyte zinc levels in women with breast cancer were evaluated in this cross-sectional, controlled study. Material and methods: Fifty-five premenopausal women of 25 to 49 years of age with and without breast cancer were divided into two groups: Group A, composed of women without breast cancer (controls, n = 26) and Group B, composed of women with breast cancer (cases, n = 29). Plasma and erythrocyte zinc levels were measured by flame atomic absorption spectrophotometry at gamma = 213.9 nm. Diet was assessed using the 3-day diet recall method and analyzed using the NutWin software program, version 1.5. Student`s t-test was used to compare means and significance was established at p <0.05. Results: Mean plasma zinc levels were 69.69 +/- 9.00 g/dt, in the breast cancer patients and 65.93 +/- 12.44 g/dt. in the controls (p = 0.201). Mean erythrocyte zinc level was 41.86 +/- 8.28 mu gZn/gHb in the cases and 47.93 +/- 7.00 mu gZn/gHb in the controls (p < 0.05). In both groups, dietary zinc levels were above the estimated average requirement. Conclusions: The present results suggest that zinc levels are lower in the erythrocyte compartment of premenopausal women with breast cancer.
Resumo:
Background: Oxidative modification of low-density lipoprotein (LDL) has been demonstrated in patients with end-stage renal disease, where it is associated with oxidative stress and plays a key role in the pathogenesis of atherosclerosis. In this context, the generation of minimally oxidized LDL, also called electronegative LDL [ LDL(-)], has been associated with active disease, and is a detectable sign of atherogenic tendencies. The purpose of this study was to evaluate serum LDL(-) levels and anti-LDL(-)IgG autoantibodies in end-stage renal disease patients on dialysis, comparing patients on hemodialysis (HD), peritoneal dialysis (PD) and a control group. In addition, the serum lipid profile, nutritional status, biochemical data and parameters of mineral metabolism were also evaluated. Methods: The serum levels of LDL(-) and anti-LDL(-) IgG autoantibodies were measured in 25 patients undergoing HD and 11 patients undergoing PD at the Centro Integradode Nefrologia, Rio de Janeiro, Brazil. Ten healthy subjects served as a control group. Serum levels of albumin, total cholesterol, triglycerides and lipoproteins were measured. Calculations of subjects` body mass index and measurements of waist circumference, triceps skin fold and arm muscle area were performed. Measurements of hematocrit, serum blood urea nitrogen, creatinine, parathyroid hormone, phosphorus and calcium were taken. Results: Levels of LDL(-) were higher in HD patients (575.6 +/- 233.1 mu g/ml) as compared to PD patients (223.4 +/- 117.5 mu g/ml, p < 0.05), which in turn were higher than in the control group (54.9 +/- 33.3 mu g/ml, p < 0.01). The anti-LDL(-) IgG autoantibodies were increased in controls (0.36 +/- 0.09 mu g/ ml) as compared to PD (0.28 +/- 0.12 mu g/ml, p < 0.001) and HD patients (0.2 +/- 0.1 mu g/ml, p < 0.001). The mean values of total cholesterol and LDL were considered high in the PD group, whereas the mean triceps skin fold was significantly lower in the HD group. Conclusion: Levels of LDL(-) are higher in renal patients on dialysis than in normal individuals, and are reciprocally related to IgG autoantibodies. LDL(-) may be a useful marker of oxidative stress, and this study suggests that HD patients are more susceptible to cardiovascular risk due to this condition. Moreover, autoantibodies reactive to LDL(-) may have protective effects in chronic kidney disease. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 mu M) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca(2+) efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. All effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP(+) transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Nemorosone, a natural-occurring polycyclic polyprenylated acylphloroglucinol, has received increasing attention due to its strong in vitro anti-cancer action. Here, we have demonstrated the toxic effect of nemorosone (1-25 mu M) on HepG2 cells by means of the MTT assay, as well as early mitochondrial membrane potential dissipation and ATP depletion in this cancer cell line. In mitochondria isolated from rat liver, nemorosone (50-500 nM) displayed a protonophoric uncoupling activity, showing potency comparable to the classic protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Nemorosone enhanced the succinate-supported state 4 respiration rate, dissipated mitochondrial membrane potential, released Ca(2+) from Ca(2+)-loaded mitochondria, decreased Ca(2+) uptake and depleted ATP. The protonophoric property of nemorosone was attested by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium in the presence of valinomycin. In addition, uncoupling concentrations of nemorosone in the presence of Ca(2+) plus ruthenium red induced the mitochondrial permeability transition process. Therefore, nemorosone is a new potent protonophoric mitochondrial uncoupler and this property is potentially involved in its toxicity on cancer cells. (C) 2010 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Resumo:
Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid, palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers, including cutaneous melanoma, in which its levels of expression are associated with tumor invasion and poor prognosis. We have previously shown that FASN inhibition with orlistat significantly reduces the number of spontaneous mediastinal lymph node metastases following the implantation of B16-F10 mouse melanoma cells in the peritoneal cavity of C57BL/6 mice. In this study, we investigate the biological mechanisms responsible for the FASN inhibition-induced apoptosis in B16-F10 cells. Both FASN inhibitors, cerulenin and orlistat, significantly reduced melanoma cell proliferation and activated the intrinsic pathway of apoptosis, as demonstrated by the cytochrome c release and caspase-9 and -3 activation. Further, apoptosis was preceded by an increase in both reactive oxygen species production and cytosolic calcium concentrations and independent of p53 activation and mitochondrial permeability transition. Taken together, these findings demonstrate the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Laboratory Investigation (2011) 91, 232-240; doi:10.1038/labinvest.2010.157; published online 30 August 2010
Resumo:
Fluoxetine (FIX) is a drug commonly used as antidepressant. However, its effects on tumorigenesis remain controversial. Aiming to evaluate the effects of FIX treatment on early malignant changes, we analyzed serotonin (5-HT) metabolism and recognition, aberrant crypt foci (ACF), proliferative process, microvessels, vascular endothelial growth factor (VEGF), and cyclooxygenase-2 (COX-2) expression in colon tissue. Male Wistar rats received a daily FLX-gavage (30 mg kg(-1)) and, a single dose of 1.2 dimethylhydrazine (DMH; i.p., 125 mg kg(-1)). After 6 weeks of FIX-treatment, our results revealed that FIX and nor-fluoxetine (N-FIX) are present in colon tissue, which was related to significant increase in serotonin (5-HT) levels (P < 0.05) possibly through a blockade in SERT mRNA (serotonin reuptake transporter; P < 0.05) resulting in lower 5-hydroxyindoleacetic acid (5-HIAA) levels (P < 0.01) and, 5-HT2C receptor mRNA expressions. FIX-treatment decreased dysplastic ACF development (P < 0.01) and proliferative process (P < 0.001) in epithelia. We observed a significant decrease in the development of malignant microvessels (P < 0.05), VEGF (P < 0.001), and COX-2 expression (P < 0.01). These findings suggest that FIX may have oncostatic effects on carcinogenic colon tissue, probably due to its modulatory activity on 5-HT metabolism and/or its ability to reduce colonic malignant events. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this work, we have used molecular dynamics, density functional theory, virtual screening, ADMET predictions, and molecular interaction field studies to design and propose eight novel potential inhibitors of CDK2. The eight molecules proposed showed interesting structural characteristics that are required for inhibiting the CDK2 activity and show potential as drug candidates for the treatment of cancer. The parameters related to the Rule of Five were calculated, and only one of the molecules violated more than one parameter. One of the proposals and one of the drug-like compounds selected by virtual screening indicated to be promising candidates for CDK2-based cancer therapy.
Resumo:
In this study was developed a new nano drug delivery system (NDDS) based on association of biodegradable surfactants with biocompatible magnetic fluid of maguemita citrate derivative. This formulation consists in a magnetic emulsion with nanostructured colloidal particles. Preliminary in vitro experiments showed that the formulation presents a great potential for synergic application in the topical release of photosensitizer drug (PS) and excellent target tissue properties in the photodynamic therapy (PDT) combined with hyperthermia (HPT) protocols. The physical chemistry characterization and in vitro assays were carried out by Zn(II) Phtalocyanine (ZnPc) photosensitizer incorporated into NDDS in the absence and the presence of magnetic fluid, showed good results and high biocompatibility. In vitro experiments were accomplished by tape-stripping protocols for quanti. cation of drug association with different skin tissue layers. This technique is a classical method for analyses of drug release in stratum corneum and epidermis+ dermis skin layers. The NDDS formulations were applied directly in pig skin (tissue model) fixed in the cell`s Franz device with receptor medium container with a PBS/EtOH 20% solution (10mM, pH 7.4) at 37 degrees C. After 12 h of topical administration stratum corneum was removed from fifty tapes and the ZnPc retained was evaluated by solvent extraction in dimetil-sulphoxide under ultrasonic bath. These results indicated that magnetic nanoemulsion (MNE) increase the drug release on the deeper skin layers when compared with classical formulation in the absence of magnetic particles. This could be related with the increase of biocompatibility of NDDS due to the great affinity for the polar extracelullar matrix in the skin and also for the increase in the drug partition inside of corneocites wall. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work we evaluated the photophysical and in vitro properties of Foscan (R), a second-generation photosensitizer drug (PS) widely used in systemic clinical protocols for cancer therapy based on Photodynamic Therapy (PDT). We employed biodegradable nanoemulsions (NE) as a colloidal vehicle of the oil/water (o/w) type focusing in topical administration of Foscan (R) and other photosensitizer drugs. This formulation was obtained and stabilized by the methodology described by Tabosa do Egito et al.,(30) based on the mixture of two phases: an aqueous solution and an organic medium consisting of nonionic surfactants and oil. The photodynamic potential of the drug incorporated into the NE was studied by steady-state and time-resolved spectroscopic techniques. We also analyzed the in vitro biological behavior carried out in mimetic biological environment protocols based on the animal model. After topical application in a skin animal model, we evaluated the Foscan (R)/NE diffusion flux into the skin layers (stratum corneum and epidermis + dermis) by classical procedures using Franz Diffusion cells. Our results showed that the photophysical properties of PS were maintained after its incorporation into the NE when compared with homogeneous organic medium. The in vitro assays enabled the determination of an adequate profile for the interaction of this system in the different skin layers, with an ideal time lag of 6 h after topical administration in the skin model. The Foscan (R) diffusion flux (J) was increased when this PS was incorporated into the NE, if compared with its flux in physiological medium. These parameters demonstrated that the NE can be potentially applied as a drug delivery system (DDS) for Foscan (R) in both in vitro and in vivo assays, as well as in future clinical applications involving topical skin cancer PDT.
Resumo:
We have used various computational methodologies including molecular dynamics, density functional theory, virtual screening, ADMET predictions and molecular interaction field studies to design and analyze four novel potential inhibitors of farnesyltransferase (FTase). Evaluation of two proposals regarding their drug potential as well as lead compounds have indicated them as novel promising FTase inhibitors, with theoretically interesting pharmacotherapeutic profiles, when Compared to the very active and most cited FTase inhibitors that have activity data reported, which are launched drugs or compounds in clinical tests. One of our two proposals appears to be a more promising drug candidate and FTase inhibitor, but both derivative molecules indicate potentially very good pharmacotherapeutic profiles in comparison with Tipifarnib and Lonafarnib, two reference pharmaceuticals. Two other proposals have been selected with virtual screening approaches and investigated by LIS, which suggest novel and alternatives scaffolds to design future potential FTase inhibitors. Such compounds can be explored as promising molecules to initiate a research protocol in order to discover novel anticancer drug candidates targeting farnesyltransferase, in the fight against cancer. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
DNA-hsp65, a DNA vaccine encoding the 65-kDa heat-shock protein of Mycobacterium leprae (Hsp65) is capable of inducing the reduction of established tumors in mouse models. We conducted a phase I clinical trial of DNA-hsp65 in patients with advanced head and neck carcinoma. In this article, we report on the vaccine`s potential to induce immune responses to Hsp65 and to its human homologue, Hsp60, in these patients. Twenty-one patients with unresectable squamous cell carcinoma of the head and neck received three doses of 150, 400 or 600 mu g naked DNA-hsp65 plasmid by ultrasound-guided intratumoral injection. Vaccination did not increase levels of circulating anti-hsp65 IgG or IgM antibody, or lead to detectable Hsp65-specific cell proliferation or interferon-gamma (IFN-gamma) production by blood mononuclear cells. Frequency of antigen-induced IL-10-producing cells increased after vaccination in 4 of 13 patients analyzed. Five patients showed disease stability or regression following immunization; however, we were unable to detect significant differences between these patients and those with disease progression using these parameters. There was also no increase in antibody or IFN-gamma responses to human Hsp60 in these patients. Our results suggest that although DNA-hsp65 was able to induce some degree of immunostimulation with no evidence of pathological autoimmunity, we were unable to differentiate between patients with different clinical outcomes based on the parameters measured. Future studies should focus on characterizing more reliable correlations between immune response parameters and clinical outcome that may be used as predictors of vaccine success in immunosuppressed individuals. Cancer Gene Therapy (2009) 16, 598-608; doi:10.1038/cgt.2009.9; published online 6 February 2009
Resumo:
Purpose: To evaluate the risk of geographic miss associated with the classic four-field ""box"" irradiation technique and to define the variables that predict this risk. Materials and Methods: The study population consisted of 80 patients with uterine cervix cancer seen between 2001 and 2006. Median age was 55 years (23-82 years), and 72 (90%) presented with squamous cell carcinoma. Most patients (68.7%) presented with locally advanced disease (IIb or more). Magnetic resonance imaging findings from before treatment were compared with findings from simulation of the conventional four-field ""box"" technique done with rectal contrast. Study variables included tumor volume; involvement of vagina, parametrium, bladder, or rectum; posterior displacement of the anterior rectal wall; and tumor anteroposterior diameter (APD). Margins were considered adequate when the target volume (primary tumor extension, whole uterine body, and parametrium) was included within the field limits and were at least 1 cm in width. Results: Field limits were inadequate in 45 (56%) patients: 29 (36%) patients at the anterior and 28 (35%) at the posterior border of the lateral fields. Of these, 12 patients had both anterior and posterior miss, and this risk was observed in all stages of the disease (p = 0.076). Posterior displacement of the anterior rectal wall beyond S2-S3 was significantly correlated with the risk of geographic miss (p = 0.043). Larger tumors (APD 6 cm or above and volume above 50 cm(3)) were also significantly correlated with this risk (p = 0.004 and p = 0.046, respectively). Conclusions: Posterior displacement of the anterior rectal wall, tumor APD, and volume can be used as guidance in evaluating the risk of geographic miss. (C) 2009 Elsevier Inc.