119 resultados para PATHOGEN PYTHIUM-INSIDIOSUM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Exposure of cells to environmental stress conditions can lead to the interruption of several intracellular processes, in particular those performed by macromolecular complexes such as the spliceosome. Results: During nucleotide sequencing of cDNA libraries constructed using RNA isolated from B. emersonii cells submitted to heat shock and cadmium stress, a large number of ESTs with retained introns was observed. Among the 6,350 ESTs obtained through sequencing of stress cDNA libraries, 181 ESTs presented putative introns (2.9%), while sequencing of cDNA libraries from unstressed B. emersonii cells revealed only 0.2% of ESTs containing introns. These data indicate an enrichment of ESTs with introns in B. emersonii stress cDNA libraries. Among the 85 genes corresponding to the ESTs that retained introns, 19 showed more than one intron and three showed three introns, with intron length ranging from 55 to 333 nucleotides. Canonical splicing junctions were observed in most of these introns, junction sequences being very similar to those found in introns from genes previously characterized in B. emersonii, suggesting that inhibition of splicing during stress is apparently a random process. Confirming our observations, analyses of gpx3 and hsp70 mRNAs by Northern blot and S1 protection assays revealed a strong inhibition of intron splicing in cells submitted to cadmium stress. Conclusion: In conclusion, data indicate that environmental stresses, particularly cadmium treatment, inhibit intron processing in B. emersonii, revealing a new adaptive response to cellular exposure to this heavy metal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis. Results: Through transposon insertion mutagenesis, 10,000 mutants of Xanthomonas citri subsp. citri strain 306 (Xcc) were obtained, and 3,300 were inoculated in Rangpur lime (Citrus limonia) leaves. Their ability to cause citrus canker was analyzed every 3 days until 21 days after inoculation; a set of 44 mutants showed altered virulence, with 8 presenting a complete loss of causing citrus canker symptoms. Sequencing of the insertion site in all 44 mutants revealed that 35 different ORFs were hit, since some ORFs were hit in more than one mutant, with mutants for the same ORF presenting the same phenotype. An analysis of these ORFs showed that some encoded genes were previously known as related to pathogenicity in phytobacteria and, more interestingly, revealed new genes never implicated with Xanthomonas pathogenicity before, including hypothetical ORFs. Among the 8 mutants with no canker symptoms are the hrpB4 and hrpX genes, two genes that belong to type III secretion system (TTSS), two hypothetical ORFS and, surprisingly, the htrA gene, a gene reported as involved with the virulence process in animal-pathogenic bacteria but not described as involved in phytobacteria virulence. Nucleic acid hybridization using labeled cDNA probes showed that some of the mutated genes are differentially expressed when the bacterium is grown in citrus leaves. Finally, comparative genomic analysis revealed that 5 mutated ORFs are in new putative pathogenicity islands. Conclusion: The identification of these new genes related with Xcc infection and virulence is a great step towards the understanding of plant-pathogen interactions and could allow the development of strategies to control citrus canker.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basidiomycete Moniliophthora perniciosa is the causal agent of witches` broom disease of Theobroma cacao (cacao). Pathogenesis mechanisms of this hemibiotrophic fungus are largely unknown. An approach to identify putative pathogenicity genes is searching for sequences induced in mycelia grown under in vitro conditions. Using this approach, genes from M. perniciosa induced under limiting nitrogen and light were identified from a cDNA library enriched by suppression subtractive hybridization as potential putative pathogenicity genes. From the 159 identified unique sequences, 59 were annotated and classified by gene ontology. Two sequences were categorized as ""Defence genes, Virulence, and Cell response"" presumably coding for allergenic proteins, whose homologues from other fungi are inducers of animal or plant defences. Differential gene expression was evaluated by quantitative amplification of reversed transcripts (RT-qPCR) of the putative identified genes coding for the two allergenic proteins (Aspf13 and 88KD), and for the enzymes Arylsulfatase (AS); Aryl-Alcohol Oxidase; Aldo-Keto Reductase (AK); Cytochrome P450 (P450); Phenylalanine Ammonia-Lyase; and Peroxidase from mycelia grown under contrasting N concentrations. All genes were validated for differential expression, except for the putative Peroxidase. The same eight genes were analysed for expression in susceptible plants inoculated with M. perniciosa, and six were induced during the early asymptomatic stage of the disease. In infected host tissues, transcripts of 88KD and AS were found more abundant at the biotrophic phase, while those from Aspf13, AK, PAL, and P450 accumulated at the necrotrophic phase, enabling to suggest that mycelia transition from biotrophic to necrotrophic might occur earlier than currently considered. These sequences appeared to be virulence life-style genes, which encode factors or enzymes that enable invasion, colonization or intracellular survival, or manipulate host factors to benefit the pathogen`s own survival in the hostile environment. (C) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various molecular systems are available for epidemiological, genetic, evolutionary, taxonomic and systematic studies of innumerable fungal infections, especially those caused by the opportunistic pathogen C. albicans. A total of 75 independent oral isolates were selected in order to compare Multilocus Enzyme Electrophoresis (MLEE), Electrophoretic Karyotyping (EK) and Microsatellite Markers (Simple Sequence Repeats - SSRs), in their abilities to differentiate and group C. albicans isolates (discriminatory power), and also, to evaluate the concordance and similarity of the groups of strains determined by cluster analysis for each fingerprinting method. Isoenzyme typing was performed using eleven enzyme systems: Adh, Sdh, M1p, Mdh, Idh, Gdh, G6pdh, Asd, Cat, Po, and Lap (data previously published). The EK method consisted of chromosomal DNA separation by pulsed-field gel electrophoresis using a CHEF system. The microsatellite markers were investigated by PCR using three polymorphic loci: EF3, CDC3, and HIS3. Dendrograms were generated by the SAHN method and UPGMA algorithm based on similarity matrices (S(SM)). The discriminatory power of the three methods was over 95%, however a paired analysis among them showed a parity of 19.7-22.4% in the identification of strains. Weak correlation was also observed among the genetic similarity matrices (S(SM)(MLEE) x S(SM)(EK) x S(SM)(SSRs)). Clustering analyses showed a mean of 9 +/- 12.4 isolates per cluster (3.8 +/- 8 isolates/taxon) for MLEE, 6.2 +/- 4.9 isolates per cluster (4 +/- 4.5 isolates/taxon) for SSRs, and 4.1 +/- 2.3 isolates per cluster (2.6 +/- 2.3 isolates/taxon) for EK. A total of 45 (13%), 39(11.2%), 5 (1.4%) and 3 (0.9%) clusters pairs from 347 showed similarity (Si) of 0.1-10%, 10.1-20%, 20.1-30% and 30.1-40%, respectively. Clinical and molecular epidemiological correlation involving the opportunistic pathogen C. albicans may be attributed dependently of each method of genotyping (i.e., MLEE, EK, and SSRs) supplemented with similarity and grouping analysis. Therefore, the use of genotyping systems that give results which offer minimum disparity, or the combination of the results of these systems, can provide greater security and consistency in the determination of strains and their genetic relationships. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moniliophthora perniciosa is the causal agent of the witches` broom disease of cacao. Based on available genomic sequences, we identified 30 new microsatellite loci, which were analysed using 50 isolates from four populations sampled over a wide geographical area in Brazil, including three populations from the Amazon, the fungal putative centre of diversity, plus one from Bahia. Nine loci were polymorphic, with an average of 2.9 alleles per locus. The level of polymorphism observed was low, but these markers may allow the evaluation of pathogen diversity and the establishment of molecular standards for isolate fingerprinting to support cacao breeding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Witches` broom is a severe disease of Theobroma cacao L. (cacao), caused by the basidiomycete Moniliophthora perniciosa. The use of resistant cultivars is the ultimate method of control, but there are limited sources of resistance. Further, resistance from the most widely used source (`Scavina 6`) has been overcome after a few years of deployment. New sources of resistance have been intensively searched for in the Amazon basin. Here, we evaluated for witches` broom resistance, cacao accessions from various natural cacao populations originally collected in the Brazilian Amazon. Resistance of 43 families was evaluated under nursery and/or field conditions by artificial or natural infection, respectively, based on disease incidence. Screening for resistance by artificial inoculation under nursery conditions appeared to be efficient in identifying these novel resistance sources, confirmed by natural field evaluation over a nine-year period. The increase in natural field infection of `Scavina 6` was clearly demonstrated. Among the evaluated families with the least witches` broom incidence, there were accessions originally collected from distinct river basins, including the Jamari river (`CAB 0371`; `CAB 0388`; `CAB 0392`; and `CAB 0410`); Acre (`CAB 0169`); Javari (`CAB 0352`); Solimes (`CAB 0270`); and from the Purus river basin, the two most outstanding resistant accessions, `CAB 0208` and `CAB 0214`. The large genetic diversity found in cacao populations occurring at river basins from Acre and Amazonas states, Brazil, increased the chance that the selected resistant accessions would be genetically more dissimilar, and represent distinct sources of resistance to M. perniciosa from `Scavina 6`.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sclerotinia sclerotiorum is a highly aggressive pathogen that causes great economic losses, especially in temperate climates. Several biological control agents are available, but actinobacteria have seldom been used to control this fungus. Our objective was to evaluate the efficiency and ultrastructural effects of the secondary metabolites produced by the ant-associated actinobacterium Propionicimonas sp. ENT-18 in controlling the sclerotia of S. sclerotiorum. We demonstrated total inhibition of sclerotia treated with 62.5 mu g/10 mu l of an ethyl acetate extract of compounds produced by ENT-18, and calculated an LC(50) of 1.69 mu g/sclerotia. Histological and ultrastructural analysis indicated that the cells of the treated sclerotia were severely damaged, suggesting direct action of the biomolecule(s) produced by the actinobacterium ENT-18 on the cell structure of the medullae and rind cell wall. This is the first report demonstrating a novel property of Propionicimonas sp.-antifungal activity against S. sclerotiorum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mating is an energy demanding process, imposing risks to physical injuries, pathogen infection and predation. Nevertheless, repeated and multiple mating are widespread even in insect species where nuptial gifts are not involved. The effects of repeated mating, by the same male, are examined on the reproductive performance of female Southern green stink bug Nezara viridula (L.). Fecundity is reduced in females mated three or four times, although there is increased longevity. Females mated once or twice produce more egg clusters and concentrate egg-laying activity in the early part of adult life, whereas those mating more often lay eggs throughout the life span, with fewer egg clusters. Although fecundity is negatively affected by the number of matings, egg fertility remains unaffected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Generalist pathogens frequently exist as a complex of genetically differentiated strains, which can differ in virulence and transmissibility. A description of the extent to which strain variability mediates host species competence is needed to understand disease dynamics for systems with both host and pathogen strain diversity. This study tested the hypothesis that strain-specific variation of a generalist vector-borne plant pathogen, Xylella fastidiosa, affects disease severity in alfalfa (Medicago sativa) and competence of this crop as a reservoir host. Alfalfa seedlings were inoculated with one of 23 X. fastidiosa isolates collected from different hosts, eight identified as belonging to an almond strain, and the remainder from a grape strain. Pathogen population, symptom severity and infection incidence were compared over five successive harvests. Infected plant size, measured mainly by plant height, internode length and above ground biomass, was reduced up to 50% compared to buffer-inoculated controls, and more severe symptoms were observed at later harvests and for higher pathogen populations. Grape isolates had higher bacterial populations within alfalfa than almond isolates. In addition, infection with grape isolates resulted in more severe alfalfa stunting than that caused by almond isolates. Moreover, there was a strong positive relationship between isolate multiplication rate and both symptom severity and infection persistence (i.e. maintenance of chronic infection within host). Isolates with low initial populations had low incidence at the final harvest, with one isolate dying out altogether. The results showed that X. fastidiosa-genetic diversity contributed to variation in alfalfa disease severity. The results also suggest that pathogen strain may mediate host competence via differences in bacterial population density and persistence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neozygites tanajoae is an entomopathogenic fungus which has been used for biocontrol of the cassava green mite (Mononychellus tanajoa, CGM) in Africa. Establishment and dispersal of Brazilian isolates which have been introduced into some African countries in recent years to improve CGM control was followed with specific PCR assays. Two primer pairs, NEOSSU_F/NEOSSU_R and 8DDC_F/8DDC_R, were used to differentiate isolates collected from several locations in Brazil and from three countries in Africa, Benin, Ghana and Tanzania. The first primer pair enabled the species-specific detection of Neozygites tanajoae, while the second differentiated the Brazilian isolates from those of other geographical origin. PCR assays were designed for detection of fungal DNA in the matrix of dead infested mites since N. tanajoae is difficult to isolate and culture on selective artificial media. Our results show that all isolates (Brazilian and African) that sporulated on mummified mites were amplified with the first primer pair confirming their Neozygites tanajoae identity. The second pair amplified DNA from all the Brazilian isolates, but did not amplify any DNA samples from the African isolates. None of the two primers showed amplification neither from any of the non-sporulating mite extracts nor from the dead uninfected mites used as negative controls. We confirmed that the two primer pairs tested are suitable for the detection and differential identification of N. tanajoae isolates from Brazil and Africa and that they are useful to monitor the establishment and spread of the Brazilian isolates of N. tanajoae introduced into Benin or into other African countries for improvement of CGM biocontrol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spider mites Tetranychus urticae Koch and Tetranychus evansi Baker and Pritchard are important pests of horticultural crops. They are infected by entomopathogenic fungi naturally or experimentally. Fungal pathogens known to cause high infection in spider mite populations belong to the order Entomophthorales and include Neozygites spp. Studies are being carried out to develop some of these fungi as mycoacaricides, as standalone control measures in an inundative strategy to replace the synthetic acaricides currently in use or as a component of integrated mite management. Although emphasis has been put on inundative releases, entomopathogenic fungi can also be used in classical, conservation and augmentative biological control. Permanent establishment of an exotic agent in a new area of introduction may be possible in the case of spider mites. Conservation biological control can be achieved by identifying strategies to promote any natural enemies already present within crop ecosystems, based on a thorough understanding of their biology, ecology and behaviour. Further research should focus on development of efficient mass production systems, formulation, and delivery systems of fungal pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner) is a bacteria] pathogen transmitted by several Sharpshooters in two tribes of Cicadellinae (Proconiini and Cicadellini). Here, we compared the transmission efficiency of X. fastidiosa in coffee (Coffea arabica L) and citrus [Citrus sinensis (L) Osbeck] by Cicadellini [Bucephalogonia xanthophis (Berg) and Dilobopterus costalimai Young] and Proconiini [Homalodisca ignorata Melichar and Oncometopia facialis (Signoret) I sharpshooters that Occur in both crops. At different seasons, healthy adults of each species were submitted to a 48-h acquisition access period on citrus or coffee source plants infected with X. fastidiosa isolates that cause Citrus variegated chlorosis (CVC) and Coffee leaf scorch (CLS), respectively, and then confined on healthy seedlings of the corresponding host plant for a 48-h inoculation access period. No significant effect of inoculation season was observed when comparing infection rates of citrus or coffee plants inoculated by vectors at different times of the year. In Citrus, the transmission rate by single insects was significantly higher for H. ignorata (30%) in relation to B. xanthophis (5%) and O. facialis (1.1%) but there was no difference among vector species in coffee, whose transmission rates ranged from 1.2 to 7.2%. Comparing host plants, H. ignorata was more effective in transmitting X. fastidiosa to citrus (30%) in relation to coffee (2.2%), whereas the other vectors transmitted the bacterium to both hosts with similar efficiencies. Despite these variations. vector efficiency in coffee and Citrus is lower than that reported in other hosts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine the effect of storage on fungal survival, mummified cadavers of the cassava green mite pathogen, Neozygites tanajoae were placed at different conditions of temperature and relative humidity. The best condition for long-term preservation was -10 degrees C. At this condition, the fungus retained viability for 10 years when the experiment was terminated, with a decrease in sporulation with time. Cadavers placed at 4 degrees C and 5% RH sporulated for 2 years, while the fungus survived for only 7 days at 25 degrees C and 50% RH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaf wetness duration (LWD) is a key parameter in agricultural meteorology since it is related to epidemiology of many important crops, controlling pathogen infection and development rates. Because LWD is not widely measured, several methods have been developed to estimate it from weather data. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results, but their complexity is a disadvantage for operational use. Alternatively, empirical models have been used despite their limitations. The simplest empirical models use only relative humidity data. The objective of this study was to evaluate the performance of three RH-based empirical models to estimate LWD in four regions around the world that have different climate conditions. Hourly LWD, air temperature, and relative humidity data were obtained from Ames, IA (USA), Elora, Ontario (Canada), Florence, Toscany (Italy), and Piracicaba, Sao Paulo State (Brazil). These data were used to evaluate the performance of the following empirical LWD estimation models: constant RH threshold (RH >= 90%); dew point depression (DPD); and extended RH threshold (EXT_RH). Different performance of the models was observed in the four locations. In Ames, Elora and Piracicaba, the RH >= 90% and DPD models underestimated LWD, whereas in Florence these methods overestimated LWD, especially for shorter wet periods. When the EXT_RH model was used, LWD was overestimated for all locations, with a significant increase in the errors. In general, the RH >= 90% model performed best, presenting the highest general fraction of correct estimates (F(C)), between 0.87 and 0.92, and the lowest false alarm ratio (F(AR)), between 0.02 and 0.31. The use of specific thresholds for each location improved accuracy of the RH model substantially, even when independent data were used; MAE ranged from 1.23 to 1.89 h, which is very similar to errors obtained with published physical models for LWD estimation. Based on these results, we concluded that, if calibrated locally, LWD can be estimated with acceptable accuracy by RH above a specific threshold, and that the EXT_RH method was unsuitable for estimating LWD at the locations used in this study. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From a genomic enriched library, we developed 27 primer pairs from microsatellite flanking sequences for Colletotrichum acutatum, associated to postbloom fruit drop disease on citrus. Loci were characterized using 40 monosporic C. acutatum isolates. Nine primer pairs successfully amplified polymorphic microsatellite regions, with 3-6 alleles per locus, and mean heterozygosities ranging 0.093-0.590 across loci. The suitability of these primers was investigated in four Colletotrichum species as well. These microsatellite markers will be useful for genetic analyses and epidemiological studies of C. acutatum.