125 resultados para Netowork Flow Analyzer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and reliable method for Hg determination in fish samples has been developed. Lyophilised fish tissue samples were extracted in a 25% (w/v) tetramethylammonium hydroxide (TMAH) solution; the extracts were then analysed by FI-CVAFS. This method can be used to determine total and inorganic Hg, using the same FI manifold. For total Hg determination, a 0.1% (w/v) KMnO(4) solution was added to the FI manifold at the sample zone, followed by the addition of a 0.5% (w/v) SnCl(2) solution, whereas inorganic Hg was determined by adding a 0.1% (w/v) L-cysteine solution followed by a 1.0% (w/v) SnCl(2) solution to the FI system. The organic fraction was determined as the difference between total and inorganic Hg. Sample preparation, reagent consumption and parameters that can influence the FI-CVAFS performance were also evaluated. The limit of detection for this method is 3.7 ng g(-1) for total Hg and 4.3 ng g(-1) for inorganic Hg. The relative standard deviation for a 1.0 mu gL(-1) CH(3)Hg standard solution (n = 20) was 1.1%, and 1.3% for a 1.0 mu gL(-1) Hg(2+) standard solution (n = 20). Accuracy was assessed by the analysis of Certified Reference Material (dogfish: DORM-2, NRCC). Recoveries of 99.1% for total Hg and 93.9% inorganic Hg were obtained. Mercury losses were not observed when sample solutions were re-analysed after a seven day period of storage at 4 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-pumping flow systems exploit pulsed flows delivered by Solenoid pumps. Their improved performance rely on the enhanced radial mass transport inherent to the pulsed flow, which is a consequence of the establishment of vortices thus a tendency towards turbulent mixing. This paper presents several evidences of turbulent mixing in relation to pulsed flows. such as recorded peak shape, establishment of fluidized beds, exploitation of flow reversal, implementation of relatively slow chemical reactions and/or heating of the reaction medium. In addition, Reynolds number associated with the GO period of a pulsed flow is estimated and photographic images of dispersing samples flowing under laminar regime and pulsed flow conditions are presented. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flow injection (FI) micelle-mediated separation/preconcentration procedure for the determination of lead and cadmium by flame atomic absorption spectrometry (FAAS) has been proposed. The analytes reacted with 1-(2-thiazolylazo)-2-naphthol (TAN) to form hydrophobic chelates, which were extracted into the micelles of 0.05% (w/v) Triton X-114 in a solution buffered at pH 8.4. In the preconcentration stage, the micellar solution was continuously injected into a flow system with four mini-columns packed with cotton, glass wool. or TNT compresses for phase separation. The analytes-containing micelles were eluted from the mini-columns by a stream of 3 mol L(-1) HCl solution and the analytes were determined by FAAS. Chemical and flow variables affecting the preconcentration of the analytes were studied. For 15 mL. of preconcentrated solution, the enhancement factors varied between 15.1 and 20.3, the limits of detection were approximately 4.5 and 0.75 mu g L(-1) for lead and cadmium, respectively. For a solution containing 100 and 10 mu g L(-1) of lead and cadmium, respectively, the R.S.D. values varied from 1.6 to 3.2% (n = 7). The accuracy of the preconcentration system was evaluated by recovery measurements on spiked water samples. The method was susceptible to matrix effects, but these interferences were minimized by adding barium ions as masking agent in the sample solutions, and recoveries from spiked sample varied in the range of 95.1-107.3%. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-pumping flow system exploiting prior assay is proposed for sequential turbidimetric determination of sulphate and chloride in natural waters. Both methods are implemented in the same manifold that provides facilities for: in-line sample clean-up with a Bio-Rex 70 mini-column with fluidized beads: addition of low amounts of sulphate or chloride ions to the reaction medium for improving supersaturation; analyte precipitation with Ba(2+) or Ag(+); real-time decision on the need for next assay. The sample is initially run for chloride determination, and the analytical signal is compared with a preset value. If higher, the sample is run again, now for sulphate determination. The strategy may lead to all increased sample throughput. The proposed system is computer-controlled and presents enhanced figures of merit. About 10 samples are run per hour (about 60 measurements) and results are reproducible and Unaffected by the presence of potential interfering ions at concentration levels usually found in natural waters. Accuracy was assessed against ion chromatography. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel strategy for accomplishing zone trapping in flow analysis is proposed. The sample and the reagent solutions are simultaneously inserted into convergent carrier streams and the established zones merge together before reaching the detector, where the most concentrated portion of the entire sample zone is trapped. The main characteristics, potentialities and limitations of the strategy were critically evaluated in relation to an analogous flow system with zone stopping. When applied to the spectrophotometric determination of nitrite in river waters, the main figures of merit were maintained, exception made for the sampling frequency which was calculated as 189h(-1), about 32% higher relatively to the analogous system with zone stopping. The sample inserted volume can be increased up to 1.0 mL without affecting sampling frequency and no problems with pump heating or malfunctions were noted after 8-h operation of the system. In contrast to zone stopping, only a small portion of the sample zone is halted with zone trapping, leading to these beneficial effects. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To determine somesthetic, olfactory, gustative and salivary abnormalities in patients with burning mouth syndrome (BMS), idiopathic trigeminal neuralgia (ITN) and trigeminal postherpetic neuralgia (PHN). SUBJECTS AND METHODS: Twenty patients from each group (BMS, ITN, PHN) and 60 healthy controls were evaluated with a systematized quantitative approach of thermal (cold and warm), mechanical, pain, gustation, olfaction and salivary flow; data were analyzed with ANOVA, Tukey, Kruskal Wallis and Dunn tests with a level of significance of 5%. RESULTS: There were no salivary differences among the groups with matched ages; the cold perception was abnormal only at the mandibular branch of PHN (P = 0.001) and warm was abnormal in all trigeminal branches of PHN and BMS; mechanical sensitivity was altered at the mandibular branch of PHN and in all trigeminal branches of BMS. The salty, sweet and olfactory thresholds were higher in all studied groups; the sour threshold was lower and there were no differences of bitter. CONCLUSION: All groups showed abnormal thresholds of gustation and olfaction; somesthetic findings were discrete in ITN and more common in PHN and BMS; central mechanisms of balance of sensorial inputs might be underlying these observations. Oral Diseases (2010) 16, 482-487

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new approach to the transmission loss allocation problem in a deregulated system. This approach belongs to the set of incremental methods. It treats all the constraints of the network, i.e. control, state and functional constraints. The approach is based on the perturbation of optimum theorem. From a given optimal operating point obtained by the optimal power flow the loads are perturbed and a new optimal operating point that satisfies the constraints is determined by the sensibility analysis. This solution is used to obtain the allocation coefficients of the losses for the generators and loads of the network. Numerical results show the proposed approach in comparison to other methods obtained with well-known transmission networks, IEEE 14-bus. Other test emphasizes the importance of considering the operational constraints of the network. And finally the approach is applied to an actual Brazilian equivalent network composed of 787 buses, and it is compared with the technique used nowadays by the Brazilian Control Center. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel wire-mesh sensor based on permittivity (capacitance) measurements is applied to generate images of the phase fraction distribution and investigate the flow of viscous oil and water in a horizontal pipe. Phase fraction values were calculated from the raw data delivered by the wire-mesh sensor using different mixture permittivity models. Furthermore, these data were validated against quick-closing valve measurements. Investigated flow patterns were dispersion of oil in water (Do/w) and dispersion of oil in water and water in oil (Do/w&w/o). The Maxwell-Garnett mixing model is better suited for Dw/o and the logarithmic model for Do/w&w/o flow pattern. Images of the time-averaged cross-sectional oil fraction distribution along with axial slice images were used to visualize and disclose some details of the flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, quasi-diabatic two-phase flow pattern visualizations and measurements of elongated bubble velocity, frequency and length were performed. The tests were run for R134a and R245fa evaporating in a stainless steel tube with diameter of 2.32 mm, mass velocities ranging from 50 to 600 kg/m(2) s and saturation temperatures of 22 degrees C, 31 degrees C and 41 degrees C. The tube was heated by applying a direct DC current to its surface. Images from a high-speed video-camera (8000 frames/s) obtained through a transparent tube just downstream the heated sections were used to identify the following flow patterns: bubbly, elongated bubbles, churn and annular flows. The visualized flow patterns were compared against the predictions provided by Barnea et al. (1983) [1], Felcar et al. (2007) [10], Revellin and Thome (2007) [3] and Ong and Thome (2009) [11]. From this comparison, it was found that the methods proposed by Felcar et al. (2007) [10] and Ong and Thome (2009) [1] predicted relatively well the present database. Additionally, elongated bubble velocities, frequencies and lengths were determined based on the analysis of high-speed videos. Results suggested that the elongated bubble velocity depends on mass velocity, vapor quality and saturation temperature. The bubble velocity increases with increasing mass velocity and vapor quality and decreases with increasing saturation temperature. Additionally, bubble velocity was correlated as linear functions of the two-phase superficial velocity. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents new experimental flow boiling heat transfer results in micro-scale tubes. The experimental data were obtained in a horizontal 2.3 mm I.D stainless steel tube with heating length of 464 mm, R134a and R245fa as working fluids, mass velocities ranging from 50 to 700 kg m(-2) s(-1), heat flux from 5 to 55 kW m(-2), exit saturation temperatures of 22, 31 and 41 degrees C, and vapor qualities ranging from 0.05 to 0.99. Flow pattern characterization was also performed from images obtained by high-speed filming. Heat transfer coefficient results from 1 to 14 kW m(-2) K(-1) were measured. It was found that the heat transfer coefficient is a strong function of heat flux, mass velocity and vapor quality. The experimental data were compared against ten flow boiling predictive methods from the literature. Liu and Winterton [3], Zhang et al. [5] and Saitoh et al. [6] worked best for both fluids, capturing most of the experimental heat transfer trends. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently semi-empirical models to estimate flow boiling heat transfer coefficient, saturated CHF and pressure drop in micro-scale channels have been proposed. Most of the models were developed based on elongated bubbles and annular flows in the view of the fact that these flow patterns are predominant in smaller channels. In these models, the liquid film thickness plays an important role and such a fact emphasizes that the accurate measurement of the liquid film thickness is a key point to validate them. On the other hand, several techniques have been successfully applied to measure liquid film thicknesses during condensation and evaporation under macro-scale conditions. However, although this subject has been targeted by several leading laboratories around the world, it seems that there is no conclusive result describing a successful technique capable of measuring dynamic liquid film thickness during evaporation inside micro-scale round channels. This work presents a comprehensive literature review of the methods used to measure liquid film thickness in macro- and micro-scale systems. The methods are described and the main difficulties related to their use in micro-scale systems are identified. Based on this discussion, the most promising methods to measure dynamic liquid film thickness in micro-scale channels are identified. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Literature presents a huge number of different simulations of gas-solid flows in risers applying two-fluid modeling. In spite of that, the related quantitative accuracy issue remains mostly untouched. This state of affairs seems to be mainly a consequence of modeling shortcomings, notably regarding the lack of realistic closures. In this article predictions from a two-fluid model are compared to other published two-fluid model predictions applying the same Closures, and to experimental data. A particular matter of concern is whether the predictions are generated or not inside the statistical steady state regime that characterizes the riser flows. The present simulation was performed inside the statistical steady state regime. Time-averaged results are presented for different time-averaging intervals of 5, 10, 15 and 20 s inside the statistical steady state regime. The independence of the averaged results regarding the time-averaging interval is addressed and the results averaged over the intervals of 10 and 20 s are compared to both experiment and other two-fluid predictions. It is concluded that the two-fluid model used is still very crude, and cannot provide quantitative accurate results, at least for the particular case that was considered. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present paper is to thermally characterize a cross-flow heat exchanger featuring a new cross-flow arrangement, which may find application in contemporary refrigeration and automobile industries. The new flow arrangement is peculiar in the sense that it possesses two fluid circuits extending in the form of two tube rows, each with two tube lines. To assess the heat exchanger performance, it is compared against that for the standard two-pass counter-cross-flow arrangement. The two-part comparison is based on the thermal effectiveness and the heat exchanger efficiency for several combinations of the heat capacity rate ratio, C*, and the number of transfer units, NTU. In addition, a third comparison is made in terms of the so-called ""heat exchanger reversibility norm"" (HERN) through the influence of various parameters such as the inlet temperature ratio, T, and the heat capacity rate ratio, C*, for several fixed NTU values. The proposed new flow arrangement delivers higher thermal effectiveness and higher heat exchanger efficiency, resulting in lesser entropy generation over a wide range of C* and NTU values. These metrics are quantified with respect to the arrangement widely used in refrigeration industry due to its high effectiveness, namely, the standard two-pass counter-cross-flow heat exchanger. The new flow arrangement seems to be a promising avenue in situations where cross-flow heat exchangers for single-phase fluid have to be used in refrigeration units. (c) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the manufacture of tubular ceramic membranes and the study of their performance in the demulsification of soybean oil/water emulsions. The membranes were made by iso-static pressing method and micro and macro structurally characterized by SEM, porosimetry by mercury intrusion and determination of apparent density and porosity. The microfiltration tests were realized on an experimental workbench, and fluid dynamic parameters, such as transmembrane flux and pressure were used to evaluate the process relative to the oil phase concentration (analysed by TOC measurements) in the permeate. The results showed that the membrane with pores` average diameter of 1.36 mu m achieved higher transmembrane flux than the membrane with pores` average diameter of 0.8 mu m. The volume of open pores (responsible for the permeation) was predominant in the total porosity, which was higher than 50% for all tested membranes. Concerning demulsification, the monolayer membranes were efficacious, as the rejection coefficient was higher than 99%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The confined flows in tubes with permeable surfaces arc associated to tangential filtration processes (microfiltration or ultrafiltration). The complexity of the phenomena do not allow for the development of exact analytical solutions, however, approximate solutions are of great interest for the calculation of the transmembrane outflow and estimate of the concentration, polarization phenomenon. In the present work, the generalized integral transform technique (GITT) was employed in solving the laminar and permanent flow in permeable tubes of Newtonian and incompressible fluid. The mathematical formulation employed the parabolic differential equation of chemical species conservation (convective-diffusive equation). The velocity profiles for the entrance region flow, which are found in the connective terms of the equation, were assessed by solutions obtained from literature. The velocity at the permeable wall was considered uniform, with the concentration at the tube wall regarded as variable with an axial position. A computational methodology using global error control was applied to determine the concentration in the wall and concentration boundary layer thickness. The results obtained for the local transmembrane flux and the concentration boundary layer thickness were compared against others in literature. (C) 2007 Elsevier B.V. All rights reserved.