226 resultados para NONEQUILIBRIUM PHASE-TRANSITIONS
Resumo:
Thin Cd(2)Nb(2)O(7) films were grown on single-crystal p-type SiO(2)/Si substrates by the metallo-organic decomposition (MOD) technique. The films were investigated by X-ray diffraction, X-ray energy-dispersive spectroscopy, and field emission scanning electron microscopy, and showed a single phase (cubic pyrochlore), a crack-free spherical grain structure, and nanoparticles with a mean size of about 68 nm. A Cauchy model was also used in order to obtain the thickness and index of refraction of the stack layers (transparent layer/SiO(2)/Si) by spectroscopic ellipsometry (SE). The dielectric constant (K) of the films was calculated to be about 25 from the capacitance-voltage (C-V) measurements. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the combined influence of quenched randomness and dissipation on a quantum critical point with O(N) order-parameter symmetry. Utilizing a strong-disorder renormalization group, we determine the critical behavior in one space dimension exactly. For super-ohmic dissipation, we find a Kosterlitz-Thouless type transition with conventional (power-law) dynamical scaling. The dynamical critical exponent depends on the spectral density of the dissipative baths. We also discuss the Griffiths singularities, and we determine observables.
Resumo:
The biological effects of chemical substitution of DNA bases triggered several investigations of their physicochemical properties This paper studies the adsorption behavior of a halogenated uracil, 5-fluorouracil (5FU). at the electrochemical interface of Au(111) and sulfuric acid solution. Upon modulation of the electric field across the interface, four distinct phases could be inferred by means of cyclic voltammetry (CV) At negative potentials relative to the SCE electrode, limited by the threshold of hydrogen evolution, no molecular species could be detected by scanning tunneling microscopy (STM) at the reconstructed Au(111)-(23 x root 3) surface, indicating that any physisorbed molecules are randomly distributed Incursion into more positive potentials increases the surface population but doer not form any two-dimensional (2D) physisorbed ordered structure Instead, we observed metastable structures that are only detectable. on surfaces with high defect density At sufficiently high positive potentials. limited by gold oxidation, the molecules are chemisorbed in a (3 x 2 root 3) ordered structure. with the aromatic ring perpendicular to the surface We report the densest chemisorbed monolayer for pyrimidine-derivative molecules (area per molecule 0 14 +/- 0 04 nm(2)). A comparison of the adsorption behavior of uracil derivatives has been made based on recent results of chemical substitution and solvent effects. We propose that pi-stacking is enhanced when halogens are incorporated in the uracil structure, in a similar fashion to what is observed in then crystal structure
Resumo:
The nonequilibrium phase transition of the one-dimensional triplet-creation model is investigated using the n-site approximation scheme. We find that the phase diagram in the space of parameters (gamma, D), where gamma is the particle decay probability and D is the diffusion probability, exhibits a tricritical point for n >= 4. However, the fitting of the tricritical coordinates (gamma(t), D(t)) using data for 4 <= n <= 13 predicts that gamma(t) becomes negative for n >= 26, indicating thus that the phase transition is always continuous in the limit n -> infinity. However, the large discrepancies between the critical parameters obtained in this limit and those obtained by Monte Carlo simulations, as well as a puzzling non-monotonic dependence of these parameters on the order of the approximation n, argue for the inadequacy of the n-site approximation to study the triplet-creation model for computationally feasible values of n.
Resumo:
An important feature of Axelrod`s model for culture dissemination or social influence is the emergence of many multicultural absorbing states, despite the fact that the local rules that specify the agents interactions are explicitly designed to decrease the cultural differences between agents. Here we re-examine the problem of introducing an external, global interaction-the mass media-in the rules of Axelrod`s model: in addition to their nearest neighbors, each agent has a certain probability p to interact with a virtual neighbor whose cultural features are fixed from the outset. Most surprisingly, this apparently homogenizing effect actually increases the cultural diversity of the population. We show that, contrary to previous claims in the literature, even a vanishingly small value of p is sufficient to destabilize the homogeneous regime for very large lattice sizes.
Resumo:
We introduce jump processes in R(k), called density-profile processes, to model biological signaling networks. Our modeling setup describes the macroscopic evolution of a finite-size spin-flip model with k types of spins with arbitrary number of internal states interacting through a non-reversible stochastic dynamics. We are mostly interested on the multi-dimensional empirical-magnetization vector in the thermodynamic limit, and prove that, within arbitrary finite time-intervals, its path converges almost surely to a deterministic trajectory determined by a first-order (non-linear) differential equation with explicit bounds on the distance between the stochastic and deterministic trajectories. As parameters of the spin-flip dynamics change, the associated dynamical system may go through bifurcations, associated to phase transitions in the statistical mechanical setting. We present a simple example of spin-flip stochastic model, associated to a synthetic biology model known as repressilator, which leads to a dynamical system with Hopf and pitchfork bifurcations. Depending on the parameter values, the magnetization random path can either converge to a unique stable fixed point, converge to one of a pair of stable fixed points, or asymptotically evolve close to a deterministic orbit in Rk. We also discuss a simple signaling pathway related to cancer research, called p53 module.
Resumo:
Dioctadecyldimethylammonium bromide (DODA B)/dipalmitoylphosphatidylcholine (DPPC) large and cationic vesicles obtained by vortexing a lipid film in aqueous solution and above the mean phase transition temperature (T-m) are characterized by means of determination of phase behaviour, size distribution, zeta-potential analysis and colloid stability. The effect of increasing % DODAB over the 0-100% range was a nonmonotonic phase behaviour. At 50% DODAB, the mean phase transition temperature and the colloid stability were at maximum. There is an intimate relationship between stability of the bilayer structure and colloid stability. In 1, 50 and 150 mM NaCl, the colloid stability for pure DPPC or pure DODAB vesicles was very low as observed by sedimentation or flocculation, respectively. In contrast, at 50% DODAB, remarkable colloid stability was achieved in 1, 50 or 150 mM NaCl for the DODAB/DPPC composite vesicles. Vesicle size decreased but the zeta-potential remained constant with % DODAB, due to a decrease of counterion binding with vesicle size. This might be important for several biotechnological applications currently being attempted with cationic bilayer systems. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We synthesize and characterize alkylthiohydroquinones (ATHs) in order to investigate their interactions with lipid model membranes, POPE and POPC. We observe the formation of structures with different morphologies, or curvature of the lipid bilayer, depending on pH and increasing temperature. We attribute their formation to changes in the balance charge/polarity induced by the ATHs. Mixtures of ATHs with POPE at pH 4 form two cubic phases, P4(3)32 and Im3m, that reach a maximum lattice size at 40 degrees C while under basic conditions these phases only expand upon heating from room temperature. The cubic phases coexist with lamellar or hexagonal phases and are associated with inhomogeneous distribution of the ATH molecules over the lipid matrix. The zwitterionic POPC does not form cubic phases but instead shows lamellar structures with no clear influence of the 2,6-BATH.
Resumo:
Single-point diamond turning of monocrystalline semiconductors is an important field of research within brittle materials machining. Monocrystalline silicon samples with a (100) orientation have been diamond turned under different cutting conditions (feed rate and depth of cut). Micro-Raman spectroscopy and atomic force microscopy have been used to assess structural alterations and surface finish of the samples diamond turned under ductile and brittle modes. It was found that silicon undergoes a phase transformation when machined in the ductile mode. This phase transformation is evidenced by the creation of an amorphous surface layer after machining which has been probed by Raman scattering. Compressive residual stresses are estimated for the machined surface and it is observed that they decrease with an increase in the feed rate and depth of cut. This behaviour has been attributed to the formation of subsurface cracks when the feed rate is higher than or equal to 2.5 mu m/rev. The surface roughness was observed to vary with the feed rate and the depth of cut. An increase in the surface roughness was influenced by microcrack formation when the feed rate reached 5.0 mu m/rev. Furthermore, a high-pressure phase transformation induced by the tool/material interaction and responsible for the ductile response of this typical brittle material is discussed based upon the presented Raman spectra. The application of this machining technology finds use for a wide range of high quality components, for example the creation of a micrometre-range channel for microfluidic devices as well as microlenses used in the infrared spectrum range.
Resumo:
The transition between tetragonal and cubic phases in nanostructured ZrO2-Sc2O3 solid solutions by high-temperature X-ray powder diffraction using synchrotron radiation is presented. ZrO2-8 and 11 mol% Sc2O3 nanopowders that exhibit the t'- and t ''-forms of the tetragonal phase, respectively, were synthesized by a stoichiometric nitrate-lysine gel-combustion route. The average crystallite size treated at 900 degrees C was about 25 nm for both compositions. Our results showed that t'-t '' and t ''-cubic transitions take place for the 8 and 11 mol% Sc2O3 samples, respectively. (C) 2008 International Centre for Diffraction Data.
Resumo:
In this paper we investigate the dynamic properties of the minimal Bell-Lavis (BL) water model and their relation to the thermodynamic anomalies. The BL model is defined on a triangular lattice in which water molecules are represented by particles with three symmetric bonding arms interacting through van der Waals and hydrogen bonds. We have studied the model diffusivity in different regions of the phase diagram through Monte Carlo simulations. Our results show that the model displays a region of anomalous diffusion which lies inside the region of anomalous density, englobed by the line of temperatures of maximum density. Further, we have found that the diffusivity undergoes a dynamic transition which may be classified as fragile-to-strong transition at the critical line only at low pressures. At higher densities, no dynamic transition is seen on crossing the critical line. Thus evidence from this study is that relation of dynamic transitions to criticality may be discarded. (C) 2010 American Institute of Physics. [doi:10.1063/1.3479001]
Resumo:
The structure of probability currents is studied for the dynamical network after consecutive contraction on two-state, nonequilibrium lattice systems. This procedure allows us to investigate the transition rates between configurations on small clusters and highlights some relevant effects of lattice symmetries on the elementary transitions that are responsible for entropy production. A method is suggested to estimate the entropy production for different levels of approximations (cluster sizes) as demonstrated in the two-dimensional contact process with mutation.
Resumo:
We consider a simple Maier-Saupe statistical model with the inclusion of disorder degrees of freedom to mimic the phase diagram of a mixture of rodlike and disklike molecules. A quenched distribution of shapes leads to a phase diagram with two uniaxial and a biaxial nematic structure. A thermalized distribution, however, which is more adequate to liquid mixtures, precludes the stability of this biaxial phase. We then use a two-temperature formalism, and assume a separation of relaxation times, to show that a partial degree of annealing is already sufficient to stabilize a biaxial nematic structure.
Resumo:
The aggregation of interacting Brownian particles in sheared concentrated suspensions is an important issue in colloid and soft matter science per se. Also, it serves as a model to understand biochemical reactions occurring in vivo where both crowding and shear play an important role. We present an effective medium approach within the Smoluchowski equation with shear which allows one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid concentrations. Experiments on a model colloidal system in simple shear flow support the validity of the model in the concentration range considered. By generalizing Kramers' rate theory to the presence of shear and collective hydrodynamics, our model explains the significant increase in the shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration.
Resumo:
The Bell-Lavis model for liquid water is investigated through numerical simulations. The lattice-gas model on a triangular lattice presents orientational states and is known to present a highly bonded low density phase and a loosely bonded high density phase. We show that the model liquid-liquid transition is continuous, in contradiction with mean-field results on the Husimi cactus and from the cluster variational method. We define an order parameter which allows interpretation of the transition as an order-disorder transition of the bond network. Our results indicate that the order-disorder transition is in the Ising universality class. Previous proposal of an Ehrenfest second order transition is discarded. A detailed investigation of anomalous properties has also been undertaken. The line of density maxima in the HDL phase is stabilized by fluctuations, absent in the mean-field solution. (C) 2009 American Institute of Physics. [doi:10.1063/1.3253297]