110 resultados para NERVE BLOCKADE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To compare the process of myelination in the developing optic nerve (ON) of anaemic rats with the subsequent recovery after being fed an iron-recovery diet. Methods In this study, the morphometrical parameters in the ON were assessed by electron microscopy in Wistar rats that were on an iron-deficient diet for 32 days or for 21 days followed by 10 days on an iron-recovery diet. Qualitative and quantitative analyses were performed using representative electron ultramicrographs. Data were analysed by one-way analysis of variance (ANOVA). When differences were detected, comparisons were made using Tukey`s post hoc test (P<0.05 was considered to be significant). Results Qualitative analysis of the ONs in anaemic and recovered animals showed a higher rate of deformed axons and increased lamellar separation in the myelin sheath when compared with the respective control group. The ON of the anaemic group showed a reduced mean density of myelinated fibres when compared with the control group. The fibre area ratio, axon area ratio, and myelin area ratio of large axons/small axons in the ONs of the control group showed the highest values for the myelin areas, axon areas, and total fibre areas. The control group showed a significantly higher myelin sheath thickness when compared with the anaemic and recovered groups. Conclusions Our data indicate that iron is necessary for maintenance of the ON cell structure, and that morphological damage from iron deficiency is not easily reverted by iron repletion. Eye (2010) 24, 901-908; doi:10.1038/eye.2009.205; published online 14 August 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Object. The goal of this paper is to analyze the extension and relationships of glomus jugulare tumor with the temporal bone and the results of its surgical treatment aiming at preservation of the facial nerve. Based on the tumor extension and its relationships with the facial nerve, new criteria to be used in the selection of different surgical approaches are proposed. Methods. Between December 1997 and December 2007, 34 patients (22 female and 12 male) with glomus jugulare tumors were treated. Their mean age was 48 years. The mean follow-up was 52.5 months. Clinical findings included hearing loss in 88%, swallowing disturbance in 50%, and facial nerve palsy in 41%. Magnetic resonance imaging demonstrated a mass in the jugular foramen in all cases, a mass in the middle ear in 97%, a cervical mass in 85%, and an intradural mass in 41%. The tumor was supplied by the external carotid artery in all cases, the internal carotid artery in 44%, and the vertebral artery in 32%. Preoperative embolization was performed in 15 cases. The approach was tailored to each patient, and 4 types of approaches were designed. The infralabyrinthine retrofacial approach (Type A) was used in 32.5%; infralabyrinthine pre- and retrofacial approach without occlusion of the external acoustic meatus (Type B) in 20.5%; infralabyrinthine pre- and retrofacial approach with occlusion of the external acoustic meatus (Type C) in 41 W. and the infralabyrinthine approach with transposition of the facial nerve and removal of the middle ear structures (Type D) in 6% of the patients. Results. Radical removal was achieved in 91% of the cases and partial removal in 9%. Among 20 patients without preoperative facial nerve dysfunction, the nerve was kept in anatomical position in 19 (95%), and facial nerve function was normal during the immediate postoperative period in 17 (85%). Six patients (17.6%) had a new lower cranial nerve deficit, but recovery of swallowing function was adequate in all cases. Voice disturbance remained in all 6 cases. Cerebrospinal fluid leakage occurred in 6 patients (17.6%), with no need for reoperation in any of them. One patient died in the postoperative period due to pulmonary complications. The global recovery, based on the Karnofsky Performance Scale (KPS), was 100% in 15% of the patients, 90% in 45%, 80% in 33%, and 70% in 6%. Conclusions. Radical removal of glomus jugulare tumor can be achieved without anterior transposition of the facial nerve. The extension of dissection, however, should be tailored to each case based on tumor blood supply, preoperative symptoms, and tumor extension. The operative field provided by the retrofacial infralabyrinthine approach, or the pre- and retrofacial approaches. with or without Closure of the external acoustic meatus, allows a wide exposure of the jugular foramen area. Global functional recovery based on the KPS is acceptable in 94% of the patients. (DOI: 10.3171/2008.10.JNS08612)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated that phrenic nerves` large myelinated fibers in streptozotocin (STZ)-induced diabetic rats show axonal atrophy, which is reversed by insulin treatment. However, studies on structural abnormalities of the small myelinated and the unmyelinated fibers in the STZ-model of neuropathy are limited. Also, structural changes in the endoneural vasculature are not clearly described in this model and require detailed study. We have undertaken morphometric studies of the phrenic nerve in insulin-treated and untreated STZ-diabetic rats and non-diabetic control animals over a 12-week period. The presence of neuropathy was assessed by means of transmission electron microscopy, and morphometry of the unmyelinated fibers was performed. The most striking finding was the morphological evidence of small myelinated fiber neuropathy due to the STZ injection, which was not protected or reversed by conventional insulin treatment. This neuropathy was clearly associated with severe damage of the endoneural vessels present on both STZ groups, besides the insulin treatment. The STZ-diabetes model is widely used to investigate experimental diabetic neuropathies, but few studies have performed a detailed assessment of either unmyelinated fibers or capillary morphology in this animal model. The present study adds useful information for further investigations on the ultrastructural basis of nerve function in diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aging affects peripheral nerve function and regeneration in experimental models but few literature reports deal with animals aged more than one year. We investigated morphological and morphometric aspects of the sural nerve in aging rats. Female Wistar rats 360, 640 and 720 days old were killed, proximal and distal segments of the right and left sural nerves were prepared for light microscopy and computerized morphometry. No morphometric differences between proximal and distal segments or between right and left sides at the same levels were found in all experimental groups. No increase in fiber and axon sizes was observed from 360 to 720 days. Likewise, no difference in total myelinated fiber number was observed between groups. Myelinated fiber population distribution was bimodal, being the 720-days old animals` distribution shifted to the left, indicating a reduction of the fiber diameters. The 9 ratio distribution of the 720-days old animals` myelinated fiber was also shifted to the left, which suggests axonal atrophy. Morphological alterations due to aging were observed, mainly related to the myelin sheath, which suggests demyelination. Large fibers were more affected than the smaller ones. Axon abnormalities were not as common or as obvious as the myelin changes and Wallerian degeneration was rarely found. These alterations were observed in all experimental groups but were much less pronounced in rats 360 days old and their severity increased with aging. in conclusion, the present study indicates that the aging neuropathy present in the sural nerve of female rats is both axonal and demyelinating. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rat saphenous nerve contains only somato-sensory fibers and is used in investigations of neuropathic pain and its treatment. Due to its superficial anatomical path, the saphenous nerve is also widely used in electrophysiological studies. Nevertheless, morphologic and morphometric descriptions of the normal saphenous nerve are scanty in the literature and information on useful morphometric parameters of this nerve is still missing. Thus, the present study aimed to investigate the longitudinal and lateral symmetry of the saphenous nerve in young rats. Proximal and distal segments of the left and right saphenous nerves from female Wistar rats, aged 30 days (N = 5) were morphometrically evaluated and comparisons were made between sides and segments. Our results show that the saphenous nerve is longitudinally and laterally symmetric since there were no morphometric differences between proximal and distal segments, as well as between right and left sides. This lateral symmetry is important in order to validate those experiments in which the contralateral nerve is used as the control. Also, the longitudinal symmetry information is fundamental to further studies involving the ""dying back"" neuropathy models. The present study adds to the literature new morphometric information on the rat saphenous nerve that might be useful for a better interpretation of further studies involving this nerve and experimental models of nerve diseases. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. The purpose of this study was to evaluate the diagnostic usefulness of ulnar nerve sonography in leprosy neuropathy with electrophysiologic correlation. Methods. Twenty-one consecutive patients with leprosy (12 men and 9 women; mean age +/- SD, 47.7 +/- 17.2 years) and 20 control participants (14 men and 6 women; mean age, 46.5 +/- 16.2 years) were evaluated with sonography. Leprosy diagnosis was established on the basis of clinical, bacteriologic, and histopathologic criteria. The reference standard for ulnar neuropathy in this study was clinical symptoms in patients with proven leprosy The sonographic cross-sectional areas (CSAs) of the ulnar nerve in 3 different regions were obtained. Statistical analyses included Student t tests and receiver operating characteristic curve analysis. Results. The CSAs of the ulnar nerve were significantly larger in the leprosy group than the control group for all regions (P < .01). Sonographic abnormalities in leprosy nerves included focal thickening (90.5%), hypoechoic areas (81%), loss of the fascicular pattern (33.3%), and focal hyperechoic areas (4.7%). Receiver operating characteristic curve analysis showed that a maximum CSA cutoff value of 9.8 mm(2) was the best discriminator (sensitivity, 0.91; specificity, 0.90). Three patients with normal electrophysiologic findings had abnormal sonographic findings. Two patients had normal sonographic findings, of which 1 had abnormal electrophysiologic findings, and the other refused electrophysiologic testing. Conclusions. Sonography and electrophysiology were complementary for identifying ulnar nerve neuropathy in patients with leprosy, with clinical symptoms as the reference standard. This reinforces the role of sonography in the investigation of leprosy ulnar neuropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dorsal premammillary nucleus (PMd) is a hypothalamic structure that plays a pivotal role in the processing of predatory threats. Lesions of this nucleus virtually eliminate the expression of defensive responses to predator exposure. However, little is known about the neurotransmitters responsible for these behavioral responses. Since PMd neurons express ionotropic glutamate receptors and exposure to predators have been shown to activate nitric oxide (NO) producing cells in this region, the aim of this study was to verify the involvement of glutamate and NO-mediated neurotransmission in defensive reactions modulated by the PMd. We tested in male Wistar rats the hypothesis that intra-PMd injection of the NMDA receptor antagonist, AP7, or the NO synthase inhibitor, N-propyl-L-arginine (NP), would attenuate behavioral responses induced by cat exposure. Our results showed that both AP7 and NP significantly attenuated the behavioral responses induced by the live cat. These results suggest that the NMDA/NO pathway plays an important role in the behavioral responses mediated by the PMd. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Erectile dysfunction (ED), as well as cardiovascular diseases (CVDs), is associated with endothelial dysfunction and increased levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha). Aim. We hypothesized that increased TNF-alpha levels impair cavernosal function. Methods. In vitro organ bath studies were used to measure cavernosal reactivity in mice infused with vehicle or TNF-alpha-(220 ng/kg/min) for 14 days. Gene expression of nitric oxide synthase isoforms was evaluated by real-time polymerase chain reaction. Results. Cavernosal strips from the TNF-alpha-infused mice displayed decreased nonadrenergic-noncholinergic (NANC)-induced relaxation (59.4 +/- 6.2 vs. control: 76.2 +/- 4.7; 16 Hz) compared with the control animals. These responses were associated with decreased gene expression of eNOS and nNOS (P < 0.05). Sympathetic-mediated, as well as phenylephrine (PE)-induced, contractile responses (PE-induced contraction; 1.32 +/- 0.06 vs. control: 0.9 +/- 0.09, mN) were increased in cavernosal strips from TNF-alpha-infused mice. Additionally, infusion of TNF-alpha increased cavernosal responses to endothelin-1 and endothelin receptor A subtype (ET(A)) receptor expression (P < 0.05) and slightly decreased tumor necrosis factor-alpha receptor 1 (TNFRI) expression (P=0.063). Conclusion. Corpora cavernosa from TNF-alpha-infused mice display increased contractile responses and decreased NANC nerve-mediated relaxation associated with decreased eNOS and nNOS gene expression. There changes may trigger ED and indicate that TNF-alpha plays a detrimental role in erectile function. Blockade of TNF-alpha actions may represent an alternative therapeutic approach for ED, especially in pathologic conditions associated with increased levels of this cytokine. Carneiro FS, Zemse S, Giachini FRC, Carneiro ZN, Lima W, Clinton Webb R, and Tostes RC. TNF-alpha infusion impairs corpora cavernosa reactivity. J Sex Med 2009;6(suppl 3):311-319.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutrophil migration is responsible for tissue damage observed in inflammatory diseases. Neutrophils are also implicated in inflammatory nociception, but mechanisms of their participation have not been elucidated. In the present study, we addressed these mechanisms in the carrageenan-induced mechanical hypernociception, which was determined using a modification of the Randall-Sellito test in rats. Neutrophil accumulation into the plantar tissue was determined by the contents of myeloperoxidase activity, whereas cytokines and PGE(2) levels were measured by ELISA and radioimmunoassay, respectively. The pretreatment of rats with fucoidin (a leukocyte adhesion inhibitor) inhibited carrageenan-induced hypernociception in a dose- and time-dependent manner. Inhibition of hypernociception by fucoidin was associated with prevention of neutrophil recruitment, as it did not inhibit the hypernociception induced by the direct-acting hypernociceptive mediators, PGE(2) and dopamine, which cause hypernociception, independent of neutrophils. Fucoidin had no effect on carrageenan-induced TNF-alpha, IL-1 beta, and cytokine-induced neutrophil chemoattractant 1 (CINC-1)/CXCL1 production, suggesting that neutrophils were not the source of hypernociceptive cytokines. Conversely, hypernociception and neutrophil migration induced by TNF-alpha, IL-1 beta, and CINC-1/CXCL1 was inhibited by fucoidin, suggesting that neutrophils are involved in the production of direct-acting hypernociceptive mediators. Indeed, neutrophils stimulated in vitro with IL-1 beta produced PGE(2), and IL-1 beta-induced PGE(2) production in the rat paw was inhibited by the pretreatment with fucoidin. In conclusion, during the inflammatory process, the migrating neutrophils participate in the cascade of events leading to mechanical hypernociception, at least by mediating the release of direct-acting hypernociceptive mediators, such as PGE(2). Therefore, the blockade of neutrophil migration could be a target to development of new analgesic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: Chemokine receptors CXCR1 and CXCR2 may mediate influx of neutrophils in models of acute and chronic inflammation. The potential benefits of oral administration of a CXCR1/2 inhibitor, DF 2162, in adjuvant-induced polyarthritis (AIA) were investigated. Experimental approach: A model of AIA in rats was used to compare the therapeutic effects of the treatment with DF2162, anti-TNF or anti-CINC-1 antibodies on joint inflammation and local production of cytokines and chemokines. Key results: DF2162 prevented chemotaxis of rat and human neutrophils induced by chemokines acting on CXCR1/2. DF2162 was orally bioavailable and metabolized to two major metabolites. Only metabolite 1 retained CXCR1/2 blocking activity. Treatment with DF2162 ( 15 mg kg(-1), twice daily) or metabolite 1, but not metabolite 2, starting on day 10 after arthritis induction diminished histological score, the increase in paw volume, neutrophil influx and local production of TNF, IL-1 beta, CCL2 and CCL5. The effects of DF2162 were similar to those of anti-TNF, and more effective than those of anti-CINC-1, antibodies. DF2162 prevented disease progression even when started 13 days after arthritis induction. Conclusions and implications: DF 2162, a novel orally-active non-competitive allosteric inhibitor of CXCR1 and CXCR2, significantly ameliorates AIA in rats, an effect quantitatively and qualitatively similar to those of anti-TNF antibody treatment. These findings highlight the contribution of CXCR2 in the pathophysiology of AIA and suggest that blockade of CXCR1/2 may be a valid therapeutic target for further studies aiming at the development of new drugs for treatment of rheumatoid arthritis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dysfunction in the hypothalamic GABAergic system has been implicated in panic syndrome in humans. Furthermore, several studies have implicated the hypothalamus in the elaboration of pain modulation. Panic-prone states are able to be experimentally induced in laboratory animals to study this phenomenon. The aim of the present work was to investigate the involvement of medial hypothalamic nuclei in the organization of panic-like behaviour and the innate fear-induced oscillations of nociceptive thresholds. The blockade of GABA(A) receptors in the neuronal substrates of the ventromedial. or dorsomedial hypothalamus was followed by elaborated defensive panic-like reactions. Moreover, innate fear-induced antinociception was consistently elicited after the escape behaviour. The escape responses organized by the dorsomedial and ventromedial hypothalamic nuclei were characteristically more elaborated, and a remarkable exploratory behaviour was recorded during GABA(A) receptor blockade in the medial hypothalamus. The motor characteristic of the elaborated defensive escape behaviour and the patterns of defensive alertness and defensive immobility induced by microinjection of the bicuculline either into the dorsomedial. or into the ventromedial hypothalamus were very similar. This was followed by the same pattern of innate fear-induced antinociceptive response that lasted approximately 40 min after the elaborated defensive escape reaction in both cases. These findings suggest that dysfunction of the GABA-mediated neuronal system in the medial hypothalamus causes panic-like responses in laboratory animals, and that the elaborated escape behaviour organized in both dorsomedial and ventromedial hypothalamic nuclei are followed by significant innate-fear-induced antinociception. Our findings indicate that the GABA(A) receptor of dorsomedial and ventromedial hypothalamic nuclei are critically involved in the modulation of panic-like behaviour. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endocannabinoid anandamide, in addition to activating cannabinoid type 1 receptors (CB1), may act as an agonist at transient receptor potential vanilloid type 1 (TRPV1) channels. In the periaqueductal gray, CB1 activation inhibits, whereas TRPV1 increases, anxiety-like behavior. In the medial prefrontal cortex (mPFC), another brain region related to defensive responses, CB1 activation induces anxiolytic-like effects. However, a possible involvement of TRPV1 is still unclear. In the present study, we tested the hypothesis that TRPV1 channel contributes to the modulation of anxiety-like behavior in the mPFC. Male Wistar rats (n = 5-7 per group) received microinjections of the TRPV1 antagonist capsazepine (1-60 nmol) in the ventral portion of the mPFC and were exposed to the elevated plus maze (EPM) or to the Vogel conflict test. Capsazepine increased exploration of open arms in the EPM as well as the number of punished licks in the Vogel conflict test, suggesting anxiolytic-like effects. No changes in the number of entries into the enclosed arms were observed in the EPM, indicating that there were no changes in motor activity. Moreover, capsazepine did not interfere with water consumption or nociceptive threshold, discarding potential confounding factors for the Vogel conflict test. These data suggest that TRPV1 in the ventral mPFC tonically inhibits anxiety-like behavior. TRPV1 could facilitate defensive responses opposing, therefore, the anxiolytic-like effects reported after local activation of CB1 receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously isolated a Lys49 phospholipase A(2) homolog (BaTX) from Bothrops alternatus snake venom using a combination of molecular exclusion chromatography and reverse phase HPLC and shown its ability to cause neuromuscular blockade. In this work, we describe a one-step procedure for the purification of this toxin and provide further details of its neuromuscular activity. The toxin was purified by reverse phase HPLC and its purity and molecular mass were confirmed by SIDS-PAGE, MALDI-TOF mass spectrometry, amino acid analysis and N-terminal sequencing. BaTX (0.007-1.4 mu M) produced time-dependent, irreversible neuromuscular blockade in isolated mouse phrenic nerve-diaphragm and chick biventer cervicis preparations (time to 50% blockade with 0.35 mu M toxin: 58 +/- 4 and 24 +/- 1 min, respectively; n = 3-8; mean +/- S.E.) without significantly affecting the response to direct muscle stimulation. In chick preparations, contractures to exogenous acetylcholine (55 and 110 mu M) or KCl (13.4 mM) were unaltered after complete blockade by all toxin concentrations. These results, which strongly suggested a presynaptic mechanism of action for this toxin, were reinforced by (1) the inability of BaTX to interfere with the carbachol-induced depolarization of the resting membrane, (2) a significant decrease in the frequency and amplitude of miniature end-plate potentials, and (3) a significant reduction (59 +/- 4%, n=12) in the quantal content of the end-plate potentials after a 60 min incubation with the toxin (1.4 mu M). In addition, a decrease in the organ bath temperature from 37 degrees C to 24 degrees C and/or the replacement of calcium with strontium prevented the neuromuscular blockade, indicating a temperature-dependent effect possibly mediated by enzymatic activity. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated morpho-functional relations of the aortic depressor nerve (ADN) 5, 15 and 120 days after the onset of streptozotocin-induced diabetes in rats. Time control animals received vehicle. Under pentobarbital anesthesia, ADN activity was recorded simultaneously with arterial pressure. After the recordings, nerves were prepared for light microscopy study and morphometry. ADN function was accessed by means of pressure-nerve activity curve (fitted by sigmoidal regression) and cross-spectral analysis between mean arterial pressure (MAP) and ADN activity. The relation between morphological (myelinated fibers number and density, total myelin area, total fiber area and percentage of occupancy) and functional (gain, signal/noise relation, frequency) parameters were accessed by linear regression analysis and correlation coefficient calculations. Functional parameters obtained by means of the sigmoidal regression curve as well as by cross-spectral analysis were similar in diabetic and control rats. Morphometric parameters of the ADN were similar between groups 5 days after the onset of diabetes. Average myelin area and myelinated fiber area were significantly smaller on diabetic rats 15 and 120 days after the onset of diabetes, being the myelinated fiber and respective axons area and diameter also smaller on 120 days group. Nevertheless, G ratio (ratio between axon and fiber diameter) was nearly 0.6 and not different between groups or experimental times. No significant relationship between morphological and functional parameters was detected in all experimental groups. The present study suggests that ADN diabetic neuropathy was time-dependent, with damage to myelinated fibers to be the primary event, not evidenced by physiological methods. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molkov YI, Zoccal DB, Moraes DJ, Paton JF, Machado BH, Rybak IA. Intermittent hypoxia-induced sensitization of central chemoreceptors contributes to sympathetic nerve activity during late expiration in rats. J Neurophysiol 105: 3080-3091, 2011. First published April 6, 2011; doi:10.1152/jn.00070.2011.-Hypertension elicited by chronic intermittent hypoxia (CIH) is associated with elevated activity of the thoracic sympathetic nerve (tSN) that exhibits an enhanced respiratory modulation reflecting a strengthened interaction between respiratory and sympathetic networks within the brain stem. Expiration is a passive process except for special metabolic conditions such as hypercapnia, when it becomes active through phasic excitation of abdominal motor nerves (AbN) in late expiration. An increase in CO(2) evokes late-expiratory (late-E) discharges phase-locked to phrenic bursts with the frequency increasing quantally as hypercapnia increases. In rats exposed to CIH, the late-E discharges synchronized in AbN and tSN emerge in normocapnia. To elucidate the possible neural mechanisms underlying these phenomena, we extended our computational model of the brain stem respiratory network by incorporating a population of presympathetic neurons in the rostral ventrolateral medulla that received inputs from the pons, medullary respiratory compartments, and retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG). Our simulations proposed that CIH conditioning increases the CO(2) sensitivity of RTN/pFRG neurons, causing a reduction in both the CO(2) threshold for emerging the late-E activity in AbN and tSN and the hypocapnic threshold for apnea. Using the in situ rat preparation, we have confirmed that CIH-conditioned rats under normal conditions exhibit synchronized late-E discharges in AbN and tSN similar to those observed in control rats during hypercapnia. Moreover, the hypocapnic threshold for apnea was significantly lowered in CIH-conditioned rats relative to that in control rats. We conclude that CIH may sensitize central chemoreception and that this significantly contributes to the neural impetus for generation of sympathetic activity and hypertension.