53 resultados para Monte-carlo Simulations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Birnbaum-Saunders regression model is becoming increasingly popular in lifetime analyses and reliability studies. In this model, the signed likelihood ratio statistic provides the basis for testing inference and construction of confidence limits for a single parameter of interest. We focus on the small sample case, where the standard normal distribution gives a poor approximation to the true distribution of the statistic. We derive three adjusted signed likelihood ratio statistics that lead to very accurate inference even for very small samples. Two empirical applications are presented. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the issue of performing accurate small-sample likelihood-based inference in beta regression models, which are useful for modelling continuous proportions that are affected by independent variables. We derive small-sample adjustments to the likelihood ratio statistic in this class of models. The adjusted statistics can be easily implemented from standard statistical software. We present Monte Carlo simulations showing that inference based on the adjusted statistics we propose is much more reliable than that based on the usual likelihood ratio statistic. A real data example is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regression models for the mean quality-adjusted survival time are specified from hazard functions of transitions between two states and the mean quality-adjusted survival time may be a complex function of covariates. We discuss a regression model for the mean quality-adjusted survival (QAS) time based on pseudo-observations, which has the advantage of directly modeling the effect of covariates in the QAS time. Both Monte Carlo Simulations and a real data set are studied. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-parameter Birnbaum-Saunders distribution has been used successfully to model fatigue failure times. Although censoring is typical in reliability and survival studies, little work has been published on the analysis of censored data for this distribution. In this paper, we address the issue of performing testing inference on the two parameters of the Birnbaum-Saunders distribution under type-II right censored samples. The likelihood ratio statistic and a recently proposed statistic, the gradient statistic, provide a convenient framework for statistical inference in such a case, since they do not require to obtain, estimate or invert an information matrix, which is an advantage in problems involving censored data. An extensive Monte Carlo simulation study is carried out in order to investigate and compare the finite sample performance of the likelihood ratio and the gradient tests. Our numerical results show evidence that the gradient test should be preferred. Further, we also consider the generalized Birnbaum-Saunders distribution under type-II right censored samples and present some Monte Carlo simulations for testing the parameters in this class of models using the likelihood ratio and gradient tests. Three empirical applications are presented. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this article is to find out the influence of the parameters of the ARIMA-GARCH models in the prediction of artificial neural networks (ANN) of the feed forward type, trained with the Levenberg-Marquardt algorithm, through Monte Carlo simulations. The paper presents a study of the relationship between ANN performance and ARIMA-GARCH model parameters, i.e. the fact that depending on the stationarity and other parameters of the time series, the ANN structure should be selected differently. Neural networks have been widely used to predict time series and their capacity for dealing with non-linearities is a normally outstanding advantage. However, the values of the parameters of the models of generalized autoregressive conditional heteroscedasticity have an influence on ANN prediction performance. The combination of the values of the GARCH parameters with the ARIMA autoregressive terms also implies in ANN performance variation. Combining the parameters of the ARIMA-GARCH models and changing the ANN`s topologies, we used the Theil inequality coefficient to measure the prediction of the feed forward ANN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we obtain asymptotic expansions up to order n(-1/2) for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in exponential family nonlinear models (Cordeiro and Paula, 1989), under a sequence of Pitman alternatives. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters and for testing the dispersion parameter, thus generalising the results given in Cordeiro et al. (1994) and Ferrari et al. (1997). We also present Monte Carlo simulations in order to compare the finite-sample performance of these tests. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hydrogen bond interactions between acetone and supercritical water are investigated using a combined and sequential Monte Carlo/quantum mechanics (S-MC/QM) approach. Simulation results show a dominant presence of con. gurations with one hydrogen bond for different supercritical states, indicating that this specific interaction plays an important role on the solvation properties of acetone in supercritical water. Using QM MP2/aug-cc-pVDZ the calculated average interaction energy reveals that the hydrogen-bonded acetone-water complex is energetically more stable under supercritical conditions than ambient conditions and its stability is little affected by variations of temperature and/or pressure. All average results reported here are statistically converged.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.