93 resultados para Mechanical flocculation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, an axisymmetric two-dimensional finite element model was developed to simulate instrumented indentation testing of thin ceramic films deposited onto hard steel substrates. The level of film residual stress (sigma(r)), the film elastic modulus (E) and the film work hardening exponent (n) were varied to analyze their effects on indentation data. These numerical results were used to analyze experimental data that were obtained with titanium nitride coated specimens, in which the substrate bias applied during deposition was modified to obtain films with different levels of sigma(r). Good qualitative correlation was obtained when numerical and experimental results were compared, as long as all film properties are considered in the analyses, and not only sigma(r). The numerical analyses were also used to further understand the effect of sigma(r) on the mechanical properties calculated based on instrumented indentation data. In this case, the hardness values obtained based on real or calculated contact areas are similar only when sink-in occurs, i.e. with high n or high ratio VIE, where Y is the yield strength of the film. In an additional analysis, four ratios (R/h(max)) between indenter tip radius and maximum penetration depth were simulated to analyze the combined effects of R and sigma(r) on the indentation load-displacement curves. In this case, or did not significantly affect the load curve exponent, which was affected only by the indenter tip radius. On the other hand, the proportional curvature coefficient was significantly affected by sigma(r) and n. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports the characteristics of blast furnace slag (BFS) pastes activated with hydrated lime (5%) and hydrated lime (2%) plus gypsum (6%) in relation to compressive strength, shrinkage (autogenous and drying) and microstructure (porosity, hydrated products). The paste mixtures were characterized using powder X-ray diffraction (XRD), mercury intrusion porosimetry (MIP) and thermogravimetric analysis (TG/DTG). BSF activated with lime and gypsum (LG) results in larger amounts of ettringite when compared with BFS activated with lime (L). Although the porosities of the L and LG mixtures were about the same, there was a greater pore refinement for the BFS activated with lime, with an increase in mesopores volume with age. The presence of ettringite and the higher volumes of macropores cause the compressive strength of BSF activated with hydrated lime plus gypsum to be smaller than that of BFS activated with lime. For both chemical activators, compressive strength developed slowly at early ages. Autogenous and drying shrinkage were greater for the BFS activated with lime, believed to result from the more refined porous structure in comparison with the mixture activated with gypsum plus lime. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of the addition of xanthan gum and glycerol to the starch of green pea with high content of AM (cv. Utrillo) in the preparation of films and their physical characteristics. Filmogenic solution (FS) with different levels of pea starch (3, 4, and 5%), xanthan gum (0, 0.05, and 0.1%), and glycerol (glycerol-starch ratio of 1: 5 w/w) were studied. The FS was obtained by boiling (5 min), followed by autoclaving for 1 h at 120 degrees C. The films were prepared by casting. Films prepared only with pea starch were mechanically resistant when compared to other films, prepared with corn, cassava, rice, and even other pea cultivars (yellow, commercial). The tensile strength of these films is comparable to synthetic films prepared with high-density polyethylene and linear low-density polyethylene. However, they are films of low elasticity when compared to other films, such as rice starch films, and especially when compared to polyethylene films. The increased concentration of starch in the solution increased the puncture force. The increased concentration of glycerol slightly decreased the film crystallinity and interfered in the mechanical properties of the films, causing reduction of the maximum values of tensile strength, strain at break, and puncture force. The plasticizer also caused an increase of elongation at break. Xanthan gum was important to formation of films; however, it did not affect their mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Biomaterials have been widely used in the field of regenerative medicine. Bovine pericardium tissue has been successfully used as a bioprosthetic material in manufacturing heart valves, but studies concerning the tissue are ongoing in order to improve its storage, preservation and transportation. This article provides an overview of the characteristics of bovine pericardium tissue chemically treated after the freeze-drying process. These characteristics are essential to evaluate the changes or damage to the tissue during the process. Methods: The mechanical properties of the tissue were analyzed by three different methods due to its anisotropic characteristics. The physical properties were analyzed by a colorimetric method, while the morphological properties were evaluated by scanning electron microscopy (SEM). Results: The freeze-dried bovine pericardium showed no significant change in its mechanical properties. There was no significant change in the elasticity of the tissue (p > 0.05) and no color change. In addition, SEM analysis showed that the freeze-dried samples did not suffer structural collapse. Conclusions: It was concluded that glutaraldehyde-treated bovine pericardium tissue showed no significant change in its properties after the freeze-drying process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study described the formulation and characterisation of the viscoelastic, mechanical and mucoadhesive properties of thermoresponsive, binary polymeric systems composed of poloxamer (P407) and poly(acrylic acid, C974P) that were designed for use as a drug delivery platform within the oral cavity. Monopolymeric and binary polymeric formulations were prepared containing 10, 15 and 20% (w/w) poloxamer (407) and 0.10-0.25% (w/w) poly(acrylic acid, 934P). The flow theological and viscoelastic properties of the formulations were determined using controlled stress and oscillatory rheometry, respectively, the latter as a function of temperature. The mechanical and mucoadhesive properties (namely the force required to break the bond between the formulation and a pre-hydrated mucin disc) were determined using compression and tensile analysis, respectively. Binary systems composed of 10% (w/w) P407 and C934P were elastoviscous, were easily deformed under stress and did not exhibit mucoadhesion. Formulations containing 15 or 20% (w/w) Pluronic P407 and C934P exhibited a sol-gel temperature T(sol/gel), were viscoelastic and offered high elasticity and resistance to deformation at 37 degrees C. Conversely these formulations were elastoviscous and easily deformed at temperatures below the sol-gel transition temperature. The sol-gel transition temperatures of systems containing 15% (w/w) P407 were unaffected by the presence of C934P; however, increasing the concentration of C934P decreased the T(sol/gel) in formulations containing 20%(w/w) P407. Rheological synergy between P407 and C934P at 37 degrees C was observed and was accredited to secondary interactions between these polymers, in addition to hydrophobic interactions between P407 micelles. Importantly, formulations composed of 20% (w/w) P407 and C934P exhibited pronounced mucoadhesive properties. The ease of administration (below the T(sol/gel)) in conjunction with the viscoelastic (notably high elasticity) and mucoadhesive properties (at body temperature) render the formulations composed of 20% (w/w) P407 and C934P as potentially useful platforms for mucoadhesive, controlled topical drug delivery within the oral cavity. (c) 2009 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucocorticoids are an important cause of secondary osteoporosis in humans, which decreases bone quality and leads to fractures. Mechanical stimulation in the form of low-intensity and high-frequency vibration seems to be able to prevent bone loss and to stimulate bone formation. The objective of this study was to evaluate the effects of mechanical vibration on bone structure in rats treated with glucocorticoids. Thirty 3-month-old adult male Wistar rats were randomized to three groups: control (C), glucocorticoid (G), and glucocorticoid with vibration (CV). The G and GV groups received 3.5 mg/kg/day of methylprednisolone 5 days/week for a duration of 9 weeks, and the C group received vehicle (saline solution) during the same period. The CV group was vibrated on a special platform for 30 min per day, 5 days per week during the experiment. The platform was set to provide a vertical acceleration of 1 G and a frequency of 60 Hz. Skeletal bone mass was evaluated by total body densitometry (DXA). Fracture load threshold, undecalcified bone histomorphometry, and bone volume were measured in tibias. Glucocorticoids induced a significantly lower weight gain (-9.7%) and reduced the bone mineral content (-9.2%) and trabecular number (-41.8%) and increased the trabecular spacing (+98.0%) in the G group, when compared to the control (C). Vibration (CV) was able to significantly preserve (29.2%) of the trabecular number and decrease the trabecular spacing (+ 26.6%) compared to the G group, although these parameters did not reach C group values. The fracture load threshold was not different between groups, but vibration significantly augmented the bone volume of the tibia by 21.4% in the CV group compared to the C group. Our study demonstrated that low-intensity and high-frequency mechanical vibration was able to partially inhibit the deleterious consequences of glucocorticoids on bone structure in rats. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prone position may delay the development of ventilator-induced lung injury (VILI), but the mechanisms require better elucidation. In experimental mild acute lung injury (ALI), arterial oxygen partial pressure (Pa(O2)), lung mechanics and histology, inflammatory markers [interleukin (IL)-6 and IL-1 beta], and type III procollagen (PCIII) mRNA expressions were analysed in supine and prone position. Wistar rats were randomly divided into two groups. In controls, saline was intraperitoneally injected while ALI was induced by paraquat. After 24-h, the animals were mechanically ventilated for 1-h in supine or prone positions. In ALI, prone position led to a better blood flow/tissue ratio both in ventral and dorsal regions and was associated with a more homogeneous distribution of alveolar aeration/tissue ratio reducing lung static elastance and viscoelastic pressure, and increasing end-expiratory lung volume and Pa(O2). PCIII expression was higher in the ventral than dorsal region in supine position, with no regional changes in inflammatory markers. In conclusion, prone position may protect the lungs against VILI, thus reducing pulmonary stress and strain. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Uncertainties about the numerous degrees of freedom in ventilator settings leave many unanswered questions about the biophysical determinants of lung injury. We investigated whether mechanical ventilation with high air flow could yield lung mechanical stress even in normal animals. Design. Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects. Thirty normal male Wistar rats (180-230 g). Interventions: Rats were ventilated for 2 hrs with tidal volume of 10 mL/kg and either with normal inspiratory air flow (V`) of 10 mL/s (F10) or high V` of 30 mL/s (F30). In the control group, animals did not undergo mechanical ventilation. Because high flow led to elevated respiratory rate (200 breaths/min) and airway peak inspiratory pressure (PIP,aw = 17 cm H2O), two additional groups were established to rule out the potential contribution of these variables: a) normal respiratory rate = 100 breaths/min and V` = 30 mL/sec; and b) PIP,aw = 17 cm H2O and V` 10 mL/sec. Measurements and Main Results: Lung mechanics and histology (light and electron microscopy), arterial blood gas analysis, and type III procollagen messenger RNA expression in lung tissue were analyzed. Ultrastructural microscopy was similar in control and F10 groups. High air flow led to increased lung plateau and peak pressures, hypoxemia, alveolar hyperinflation and collapse, pulmonary neutrophilic infiltration, and augmented type III procollagen messenger RNA expression compared with control rats. The reduction of respiratory rate did not modify the morphofunctional behavior observed in the presence of increased air flow. Even though the increase in peak pressure yielded mechanical and histologic changes, type III procollagen messenger RNA expression remained unaltered. Conclusions: Ventilation with high inspiratory air flow may lead to high tensile and shear stresses resulting in lung functional and morphologic compromise and elevation of type III procollagen messenger RNA expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the effects of different mechanical ventilation (MV) strategies on the mucociliary system. Experimental study. Twenty-seven male New Zealand rabbits. After anesthesia, animals were tracheotomized and ventilated with standard ventilation [tidal volume (Vt) 8 ml/kg, positive end expiratory pressure (PEEP) 5 cmH(2)O, flow 3 L/min, FiO(2) 0.4] for 30 min. Next, animals were randomized into three groups and ventilated for 3 h with low volume (LV): Vt 8 ml/kg, PEEP 5 cmH(2)O, flow 3 L/min (n = 6); high volume (HV): Vt 16 ml/kg, PEEP 5 cmH(2)O, flow 5 L/min (n = 7); or high pressure (HP): Ppeak 30 cmH(2)O, PEEP 12 cmH(2)O (n = 8). Six animals (controls) were ventilated for 10 min with standard ventilation. Vital signals, blood lactate, and respiratory system mechanics were verified. Tracheal tissue was collected before and after MV. Lung and tracheal tissue sections were stained to analyze inflammation and mucosubstances by the point-counting method. Electron microscopy verified tracheal cell ultrastructure. In situ tracheal ciliary beating frequency (CBF), determined using a videoscopic technique, and tracheal mucociliary transport (TMCT), assessed by stereoscopic microscope, were evaluated before and after MV. Respiratory compliance decreased in the HP group. The HV and HP groups showed higher lactate levels after MV. Macroscopy showed areas of atelectasis and congestion on HV and HP lungs. Lung inflammatory infiltrate increased in all ventilated groups. Compared to the control, ventilated animals also showed a reduction of total and acid mucus on tracheal epithelium. Under electron microscopy, injury was observed in the ciliated cells of the HP group. CBF decreased significantly after MV only in the HP group. TMCT did not change significantly in the ventilated groups. Different MV strategies induce not only distal lung alterations but also morphological and physiological tracheal alterations leading to mucociliary system dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To compare mechanical and ethanol epithelial removal with respect to myofibroblast development and haze formation after photorefractive keratectomy (PRK). METHODS: Seventeen rabbits underwent mechanical or ethanol debridement, and the opposite eye of each rabbit served as an unwounded control. In both groups, the epithelium was removed with a spatula and discarded. A -9.00-diopter PRK was performed in each eye. The level of haze in each cornea at 4 weeks was graded at the slit-lamp microscope according to the Fantes scale. Myofibroblast generation was detected with immunocytochemistry for alpha-smooth muscle actin (alpha-SMA) and cells were quantitatively analyzed. RESULTS: No difference was noted between the two groups in alpha-SMA + myofibroblasts 4 weeks after surgery (43.6 +/- 2.0/400X field and 45.7 +/- 4.8/400X field in ethanol and mechanical groups, respectively) (P=.10). A slight difference was noted but did not reach statistical significance with regard to stromal haze between ethanol and mechanical groups (2.0 +/- 0.5 and 2.3 +/- 0.4, respectively, P=.063). The ethanol and mechanical groups were statistically different when compared to controls regarding stromal haze and alpha-SMA+ cells (P <.0001 for all comparisons). CONCLUSIONS:No difference was noted in clinical haze or myofibroblast generation between corneas that had PRK with mechanical,or ethanol epithelial debridement. [J Refract Surg., 2008;24:923-927.]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To compare the triggering performance of mid-level ICU mechanical ventilators with a standard ICU mechanical ventilator. Design: Experimental bench study. Setting: The respiratory care laboratory of a university-affiliated teaching hospital. Subject: A computerized mechanical lung model, the IngMar ASL5000. Interventions: Ten mid-level ICU ventilators were compared to an ICU ventilator at two levels of lung model effort, three combinations of respiratory mechanics (normal, COPD and ARDS) and two modes of ventilation, volume and pressure assist/control. A total of 12 conditions were compared. Measurements and main results: Performance varied widely among ventilators. Mean inspiratory trigger time was < 100 ms for only half of the tested ventilators. The mean inspiratory delay time (time from initiation of the breath to return of airway pressure to baseline) was longer than that for the ICU ventilator for all tested ventilators except one. The pressure drop during triggering (Ptrig) was comparable with that of the ICU ventilator for only two ventilators. Expiratory Settling Time (time for pressure to return to baseline) had the greatest variability among ventilators. Conclusions: Triggering differences among these mid-level ICU ventilators and with the ICU ventilator were identified. Some of these ventilators had a much poorer triggering response with high inspiratory effort than the ICU ventilator. These ventilators do not perform as well as ICU ventilators in patients with high ventilatory demand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods. Metallic frameworks (25 mm x 3 mm x 0.5 mm) (N = 96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 mu m aluminum oxide at the central area of the frameworks (8 mm x 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: I mm). The specimens from each ceramic-metal combination (N = 96, n = 12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 degrees C for 24 h (control group), thermal cycling (3000 cycles, between 4 and 55 degrees C, dwell time: 10 s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 degrees C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey`s test (alpha = 0.05). Results. The mean flexural strength values for the ceramic-gold alloy combination (55 +/- 7.2MPa) were significantly higher than those of the ceramic-Ti cp combination (32 +/- 6.7 MPa) regardless of the fatigue conditions performed (p < 0.05). Mechanical and thermo-mechanical fatigue decreased the flexural strength results significantly for both ceramic-gold alloy (52 +/- 6.6 and 53 +/- 5.6 MPa, respectively) and ceramic-Ti cp combinations (29 +/- 6.8 and 29 +/- 6.8 MPa, respectively) compared to the control group (58 +/- 7.8 and 39 SA MPa, for gold and Ti cp, respectively) (p < 0.05) (Tukey`s test). While ceramic-Ti cp combinations failed adhesively at the metal-opaque interface, gold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Significance. Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic-Ti cp combinations with the results being significantly lower for the latter in all experimental conditions. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Experimental study idealized to investigate the mechanical properties of deep flexor tendons of rabbits that underwent the tenotomy followed by tenorrhaphy and early application of therapeutic ultrasound with different intensities, in comparison to tendons submitted to tenorrhaphy only. Material and Method: Forty-four rabbits were divided into four experimental groups according to the ultrasound application. They were all submitted to a section of deep flexor tendon in zone 2 and immobilized with an orthosis maintained throughout the experiment. Group A received ultrasonic treatment with an intensity of 1.4 W/cm(2), group B with 0.6 W/cm(2), both in continuous mode, group C with 0.6 W/cm(2) SATA, in pulsated mode at 50% and group D did not receive any ultrasonic treatment. The ultrasonic frequency employed was 1 MHz. After euthanasia, the tendons were dissected and submitted to the mechanical test of traction and qualitative histological analysis. The evaluated mechanical properties were: maximum force, deformation in maximum force and stiffness. Results: There were no statistically significant differences among the experimental groups. Conclusion: Therapeutic ultrasound did not improve the mechanical properties of the flexor tendons after repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assess the effects of chemical processing, ethylene oxide sterilization, and threading on bone surface and mechanical properties of bovine undecalcified bone screws. In addition, we evaluate the possibility of manufacturing bone screws with predefined dimensions. Scanning electronic microscopic images show that chemical processing and ethylene oxide treatment causes collagen fiber amalgamation on the bone surface. Processed screws hold higher ultimate loads under bending and torsion than the in natura bone group, with no change in pull-out strength between groups. Threading significantly reduces deformation and bone strength under torsion. Metrological data demonstrate the possibility of manufacturing bone screws with standardized dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Mechanical properties (MP) are clinically applicable tools for healthcare professionals working on the musculoskeletal system. Objectives: The aim of this study was to evaluate two protocols of neuromuscular electric stimulation (NMES) to improve MP regeneration of the myotendinous complex after segment immobilization in female rats. Materials and Methods: Fifty animals were equally distributed into five groups: Control (CG, n=10); Immobilized (IG, n=10); Immobilized and freely remobilized (IFG, n=10); Immobilized and NMES once/day (IEG1, n=10); Immobilized and MNES twice/day (IEG2, n=10). Immobilization was kept for 14 days, and remobilization was subsequently released for 10 days. NMES was applied for 10 days, post-immobilization, every morning for 10 minutes to IEG1 animals and every morning and afternoon (total 20 minutes) to the IEG2 group. After these procedures, the gastrocnemius muscle was submitted to the mechanical traction assay to evaluate stiffness, resilience, load and stretching at maximum limit MPs. Results: Immobilization reduced the MP values concerning load and stiffness (p 0.05). Results for NMES applied twice a day were less satisfactory than the ones obtained with one application or in the remobilized group (p>0.05). Conclusion: It is concluded that the gastrocnemius muscle became structurally better organized through a single NMES application and by remobilization.