80 resultados para MAGNETIC PROPERTIES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heat treated electrical steel laminations have shown evidence of low ductility behavior, characterized by a small number of bends till fracture, on repeated bending tests. The laminations were produced using a new grade of electrical steel with much lower aluminum content than usual. The problem happens when the oxygen potential (measured by the dew point of the atmosphere) of the heat treatment atmosphere is abnormally high. Furthermore, ductility can be restored by a low-oxygen potential heat treatment. Although the heat treatment resulted in a loss of ductility, the magnetic properties were not deteriorated. The low ductility samples always show intergranular fracture, whereas the un-treated laminations fracture by cleavage. The low ductility is associated with the formation of silicon manganese nitride precipitates formed at grain boundaries, although they are not the cause of the low ductility. Ductility could be restored by a low dew point heat treatment but the inclusions remained in the grain boundaries. The low ductility and its recovery must be ascribed to the presence of nitrogen atoms segregated to the grain boundaries when the heat treatment atmosphere has a high oxygen potential. The lack of aluminum in the composition of the steel hinders the scavenging effect of this element on nitrogen atoms in solution in the steel. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To explain the magnetic behavior of plastic deformation of thin magnetic films (Fe and permalloy) on an elastic substrate (nitinol), it is noted that unlike in the bulk, the dislocation density does not increase dramatically because of the dimensional constraint. As a result, the resulting residual stress, even though strain hardening is limited, dominates the observed magnetic behavior. Thus, with the field parallel to the stress axis, the compressive residual stress resulting from plastic deformation causes a decrease in remanence and an increase in coercivity; and with the field perpendicular to the stress axis, the resulting compressive residual stress causes an increase in remanence and a decrease in coercivity. These elements have been inserted into the model previously developed for plastic deformation in the bulk, producing the aforementioned behavior, which has been observed experimentally in the films.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Cluster Variation Method (CVM), introduced over 50 years ago by Prof. Dr. Ryoichi Kikuchi, is applied to the thermodynamic modeling of the BCC Cr-Fe system in the irregular tetrahedron approximation, using experimental thermochemical data as initial input for accessing the model parameters. The results are checked against independent data on the low-temperature miscibility gap, using increasingly accurate thermodynamic models, first by the inclusion of the magnetic degrees of freedom of iron and then also by the inclusion of the magnetic degrees of freedom of chromium. It is shown that a reasonably accurate description of the phase diagram at the iron-rich side (i.e. the miscibility gap borders and the Curie line) is obtained, but only at expense of the agreement with the above mentioned thermochemical data. Reasons for these inconsistencies are discussed, especially with regard to the need of introducing vibrational degrees of freedom in the CVM model. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Assuming that different energy dissipation mechanisms are at work along hysteresis, a hysteresis loss subdivision procedure has been proposed, using the induction at maximum permeability ( around 0.8 T, in electrical steels) as the boundary between the ""low-induction`` and the ""high-induction`` regions. This paper reviews the most important results obtained in 10 years of investigation of the effect of microstructure on these components of the hysteresis loss. As maximum induction increases, the ""low-induction loss`` increases linearly up to 1.2 T, while the ""high-induction loss`` is zero up to 0.7 T and then increases as a power law with n = 5. Low-induction loss behavior is linearly related to H(c) between 0.4 and 1.2 T. Grain size has a larger influence on low-induction losses than on high-induction losses. Texture has a much stronger influence on high loss than on low-induction loss, and it is related to the average magnetocrystalline energy. 6.5%Si steel shows smaler hysteresis loss at 1.5 T than 3.5%Si steel only because of its smaler high-induction component. The abrupt increase in hysteresis loss due to very small plastic deformation is strongly related to the high-induction loss component. These results are discussed in terms of energy dissipation mechanisms such as domain wall movement, irreversible rotation and domain wall energy dissipation at domain nucleation and annihilation. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A processing route has been developed for recovering the desired lambda fiber in iron-silicon electrical steel needed for superior magnetic properties in electric motor application. The lambda fiber texture is available in directionally solidified iron-silicon steel with the < 001 > columnar grains but was lost after heavy rolling and recrystallization required for motor laminations. Two steps of light rolling each followed by recrystallization were found to largely restore the desired fiber texture. This strengthening of the < 001 > fiber texture had been predicted on the basis of the strain-induced boundary migration (SIBM) mechanism during recrystallization of lightly rolled steel from existing grains of near the ideal orientation, due to postulated low stored energies. Taylor and finite element models supported the idea of the low stored energy of the lambda fiber grains. The models also showed that the lambda fiber grains, though unstable during rolling, only rotated away from their initial orientations quite slowly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed rock magnetic and paleomagnetic study was performed on samples from the Neoproterozoic Itajai Basin in the state of Santa Catarina, Brazil, in order to better constrain the paleogeographic evolution of the Rio de la Plata craton between 600 and 550 Ma. However, rock magnetic properties typical of remagnetized rocks and negative response in the fold test indicated that these rocks carried a secondary chemical remanent magnetization. After detailed AF and thermal cleaning, almost all samples showed a normal polarity characteristic remanent magnetization component close to the present geomagnetic field. The main magnetic carriers are magnetite and hematite, probably of authigenic origin. The mean paleomagnetic pole of the ltajai Basin is located at Plat= -84 degrees, Plong = 97.5 degrees (A95 = 2 degrees) and overlaps the lower Cretaceous segment of the apparent polar wander path of South America, suggesting a cause and effect with the opening of the South Atlantic Ocean. A compilation of remagnetized paleomagnetic poles from South America is presented that highlights the superposition of several large-scale remagnetization events between the Cambrian and the Cretaceous. It is suggested that some paleomagnetic poles used to calibrate the APWP of Gondwana at Precambrian times need to be revised; the indication of remagnetized areas in southern South America may offer some help in the selection of sites for future paleomagnetic investigations in Precambrian rocks. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the thermodynamic properties and the phase diagrams of a multi-spin antiferromagnetic spherical spin-glass model using the replica method. It is a two-sublattice version of the ferromagnetic spherical p-spin glass model. We consider both the replica-symmetric and the one-step replica-symmetry-breaking solutions, the latter being the most general solution for this model. We find paramagnetic, spin-glass, antiferromagnetic and mixed or glassy antiferromagnetic phases. The phase transitions are always of second order in the thermodynamic sense, but the spin-glass order parameter may undergo a discontinuous change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We performed a first principles total energy investigation on the structural, electronic, and magnetic properties of 3d-transition metal-encapsulated adamantane molecules (TM@C(10)H(16). with TM = Cr, Mn, Fe, Co, and Ni). We find that the C-C interactions are strong enough to maintain the molecular rigidity upon TM incorporation, although outward relaxations and formation energies are large. We built a microscopic model that explains the electronic structure of those molecules. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polycrystalline Ni nanowires were electrodeposited in nanoporous anodized alumina membranes with mean diameter of approximately 42 nm. Their magnetic properties were studied at 300 K, by measurements of recoil curves from demagnetized state and also from saturated state. M(rev) and M(irr) components were obtained and M(rev)(M(irr)) H curves were constructed from the experimental data. These curves showed a behavior that suggests a non-uniform reversal mode influenced by the presence of dipolar interactions in the system. A qualitative approach to this behavior is obtained using a Stoner-Wohlfarth model modified by a mean field term and local interaction fields. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have performed a systematic study of the time and temperature dependencies of the electrical resistivity (rho(T, t)) inNd(0.5)Ca(0.5)Mn(1-x)Cr(x)O(3) single crystals with x = 0.02 and 0.07 in order to examine the dynamics of the phase separation. The relaxation effects can be described by the combination of a rapid exponential increase/decrease with a slower logarithmic contribution at longer times. The experimental results suggest the existence of a large temperature window in which huge relaxation effects occur, and the relative fraction of the coexisting phases rapidly changes as a function of time, depending on the initial magnetic state of the sample. The rho(T, t) relaxation measurements were shown to be a suitable tool for probing the dynamical nature of the phase separation, in which magnetically distinct phases compete against each other in a wide temperature range. In addition, the features observed in the rho(T, t) curves were found to be in excellent agreement with both the magnetic properties and the structural transitions observed in these manganites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetic properties of Co nanostructures and a Co monolayer on W(001) have been studied in the framework of density functional theory. Different geometries such as planar and three-dimensional clusters have been considered, with cluster sizes varying between 2 and 13 atoms. The calculations were performed using the real-space linear muffin-tin orbital method (RS-LMTO-ASA). With respect to the stability of the magnetic state, we predict an antiferromagnetic (AFM) structure for the ground state of the planar Co clusters and a ferromagnetic (FM) state for the three-dimensional clusters. For the three-dimensional clusters, one of the AFM arrangements leads to frustration due to the competing FM and AFM exchange interactions between different atoms in the cluster, and gives rise to a non-collinear state with energy close to that of the FM ground state. The relative role of the Co-Co and Co-W exchange interactions is also investigated. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we report on the magnetic properties of nickel nanoparticles (NP) in a SiO(2)-C thin film matrix, prepared by a polymeric precursor method, with Ni content x in the 0-10 wt% range. Microstructural analyses of the films showed that the Ni NP are homogenously distributed in the SiO(2)-C matrix and have spherical shape with average diameter of similar to 10 nm. The magnetic properties reveal features of superparamagnetism with blocking temperatures T (B) similar to 10 K. The average diameter of the Ni NP, estimated from magnetization measurements, was found to be similar to 4 nm for the x = 3 wt% Ni sample, in excellent agreement with X-ray diffraction data. M versus H hysteresis loops indicated that the Ni NP are free from a surrounding oxide layer. We have also observed that coercivity (H (C)) develops appreciably below T (B), and follows the H (C) ae [1 - (T/T (B))(0.5)] relationship, a feature expected for randomly oriented and non-interacting nanoparticles. The extrapolation of H (C) to 0 K indicates that coercivity decreases with increasing x, suggesting that dipolar interactions may be relevant in films with x > 3 wt% Ni.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The perpendicular exchange bias and magnetic anisotropy were investigated in IrMn/Pt/[Co/Pt](3) multilayers through the analysis of in-plane and out-of-plane magnetization hysteresis loops. A phenomenological model was used to simulate the in-plane curves and the effective perpendicular anisotropies were obtained employing the area method. The canted state anisotropy was introduced by taking into account the first and second uniaxial anisotropy terms of the ferromagnet with the corresponding uniaxial anisotropy direction allowed to make a nonzero angle with the film`s normal. This angle, obtained from the fittings, was of approximately 15 degrees for IrMn/[Co/Pt](3) film and decreases with the introduction of Pt in the IrMn/Pt/[Co/Pt](3) system, indicating that the Pt interlayer leads to a predominant perpendicular anisotropy. A maximum of the out-of-plane anisotropy was found between 0.5 and 0.6 nm of Pt, whereas a maximum of the perpendicular exchange bias was found at 0.3 nm. These results are very similar to those obtained for IrMn/Cu/[Co/Pt](3) system; however, the decrease of the exchange bias with the spacer thickness is more abrupt and the enhacement of the perpendicular anisotropy is higher for the case of Cu spacer as compared with that of Pt spacer. The existence of a maximum in the perpendicular exchange bias as a function of the Pt layer thickness was attributed to the predominance of the enhancement of exchange bias due to more perpendicular Co moment orientation over the exponential decrease of the ferromagnetic/antiferromagnetic exchange coupling and, consequently, of the exchange-bias field. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glass microspheres containing radionuclides are used to treat liver cancer. A promising alternative therapy is being developed based on the magnetic hyperthermia which is related to the heat supplied by a magnetic material under an alternating current magnetic field. The advantage of this option is that most of killed cells are cancer cells which are more susceptible to the temperature raise. In the present work aluminum iron silicate glasses containing minor glass modifiers and nucleating agents were synthesized as irregular shape particles which were further transformed in microspheres by using a petrol liquefied gas-oxygen torch. The optimized processing parameters which lead to microspheres that give a response to the magnetic field were determined. The dissolution rate in water at 90 degrees C was determined to be 3 x 10(-8) g cm(-2) min(-1). The microsphere size distribution was determined by laser scattering. The crystalline phase responsible for the ferromagnetic response was identified as magnetite. Since this phase has a high saturation magnetization and high Curie temperature, it is potentially useful for biomedical applications. The hysteresis magnetic loop was measured for materials produced in different conditions, and some of them showed to be appropriated for thermotherapy. The ratio Fe(3+)/Fe(total) was determined by Mossbauer spectroscopy. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe in this article the application of a high-density gas aggregation nanoparticle gun to the production and characterization of high anisotropy SmCo nanoparticles. We give a detailed description of the simple but efficient experimental apparatus with a focus on the microscopic processes of the gas aggregation technique. Using high values of gas flux (similar to 45 sccm) we are able to operate in regimes of high collimation of material. In this regime, as we explain in terms of a phenomenological model, the power applied to the sputtering target becomes the main variable to change the size of the clusters. Also presented are the morphological, structural, and magnetic characterizations of SmCo nanoparticles produced using 10 and 50 W of sputtering power. These values resulted in mean sizes of similar to 12 and similar to 20 nm. Significant differences are seen in the structural and magnetic properties of the samples with the 50 W sample showing a largely enhanced crystalline structure and magnetic anisotropy.