53 resultados para Luminous efficiency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pentrophic membrane (PM) is an anatomical structure surrounding the food bolus in most insects. Rejecting the idea that PM has evolved from coating mucus to play the same protective role as it, novel functions were proposed and experimentally tested. The theoretical principles underlying the digestive enzyme recycling mechanism were described and used to develop an algorithm to calculate enzyme distributions along the midgut and to infer secretory and absorptive sites. The activity of a Spodoptera frugiperda microvillar aminopeptidase decreases by 50% if placed in the presence of midgut contents. S. frugiperda trypsin preparations placed into dialysis bags in stirred and unstirred media have activities of 210 and 160%, respectively, over the activities of samples in a test tube. The ectoperitrophic fluid (EF) present in the midgut caeca of Rhynchosciara americana may be collected. If the enzymes restricted to this fluid are assayed in the presence of PM contents (PMC) their activities decrease by at least 58%. The lack of PM caused by calcofluor feeding impairs growth due to an increase in the metabolic cost associated with the conversion of food into body mass. This probably results from an increase in digestive enzyme excretion and useless homeostatic attempt to reestablish destroyed midgut gradients. The experimental models support the view that PM enhances digestive efficiency by: (a) prevention of non-specific binding of undigested material onto cell Surface; (b) prevention of excretion by allowing enzyme recycling powered by an ectoperitrophic counterflux of fluid; (c) removal from inside PM of the oligomeric molecules that may inhibit the enzymes involved in initial digestion; (d) restriction of oligomer hydrolases to ectoperitrophic space (ECS) to avoid probable partial inhibition by non-dispersed undigested food. Finally,PM functions are discussed regarding insects feeding on any diet. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study on whether and to what extent subcellular localization may compete favorably with photosensitization efficiency with respect to the overall efficiency of photoinduced cell death. We have compared the efficiency with which two cationic photosensitizers, namely methylene blue (MB) and crystal violet (CV), induce the photoinduced death of human cervical adenocarcinoma (HeLa) cells. Whereas MB is well known to generate singlet oxygen and related triplet excited species with high quantum yields in a variety of biological and chemical environments (i.e., acting as a typical type II photosensitizer), the highly mitochondria-specific CV produces triplet species and singlet oxygen with low yields, acting mostly via the classical type I mechanism (e.g., via free radicals). The findings described here indicate that the presumably more phototoxic type II photosensitizer (MB) does not lead to higher degrees of cell death compared to the type I (CV) photosensitizer. In fact, CV kills cells with the same efficiency as MB, generating at least 10 times fewer photoinduced reactive species. Therefore, subcellular localization is indeed more important than photochemical reactivity in terms of overall cell killing, with mitochondrial localization representing a highly desirable property for the development of more specific/efficient photosensitizers for photodynamic therapy applications. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient compact TiO(2) films using different polyeleetrolytes are prepared by the layer-by-layer technique (LbL) and applied as an effective contact and blocking film in dye-sensitized solar cells (DSCs). The polyanion thermal stability plays a major role on the compact layers, which decreases back electron transfer processes and current losses at the FTO/TiO(2) interface. FESEM images show that polyelectrolytes such is sodium sullonated polystyrene (PSS) and sulfonated lignin (SE), in comparison to poly(acrylic acid) (FAA), ensure an adequate morphology for the LbL TiO(2) layer deposited before the mesoporous film, even triter the sintering step at 450 degrees C. The so treated photoanode in DSCs leads to a 30% improvement On the overall conversion efficiency. Electrochemical impedance spectroscopy (EIS) is employed to ascertain the role of die compact films with such polyelectrolytes. The significant increase in V(oc) of the solar cells with adequate polyelectrolytes in the LbL TiO(2) films shows their pivotal role in decreasing the electron recombination at the FTO surface and enhancing the electrical contact of FTO with the mesoporous TiO(2) layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of anatase and rutile domains on nanocrystalline films of P25 TiO(2), as well as the distinct coordination modes of carboxylates on those phases, were revealed by confocal Raman microscopy, a technique that showed to be suitable for imaging the chemical morphology down to submicrometric size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acylation of three cellulose samples by acetic anhydride, Ac(2)O, in the solvent system LiCl/N,N-dimethylacetamide, DMAc (4 h, 110 A degrees C), has been revisited in order to investigate the dependence of the reaction efficiency on the structural characteristics of cellulose, and its aggregation in solution. The cellulose samples employed included microcrystalline, MCC; mercerized cotton linters, M-cotton, and mercerized sisal, M-sisal. The reaction efficiency expresses the relationship between the degree of substitution, DS, of the ester obtained, and the molar ratio Ac(2)O/AGU (anhydroglucose unit of the biopolymer); 100% efficiency means obtaining DS = 3 at Ac(2)O/AGU = 3. For all celluloses, the dependence of DS on Ac(2)O/AGU is described by an exponential decay equation: DS = DS(o) - Ae(-[(Ac2O/AGU)/B]); (A) and (B) are regression coefficients, and DS(o) is the calculated maximum degree of substitution, achieved under the conditions of each experiment. Values of (B) are clearly dependent on the cellulose employed: B((M-cotton)) > B((M-sisal)) > B((MCC)); they correlate qualitatively with the degree of polymerization of cellulose, and linearly with the aggregation number, N(agg), of the dissolved biopolymer, as calculated from static light scattering measurements: (B) = 1.709 + 0.034 N(agg). To our knowledge, this is the first report on the latter correlation; it shows the importance of the physical state of dissolved cellulose, and serves to explain, in part, the need to use distinct reaction conditions for MCC and fibrous celluloses, in particular Ac(2)O/AGU, time, temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dye-sensitized solar cells, named by us Dye-Cells, are one of the most promising devices for solar energy conversion due to their reduced production cost and low environmental impact, especially those sensitized by natural dyes. The efficiency and stability of devices based on natural sensitizers such as mulberry (Morus alba Lam), blueberry (Vaccinium myrtillus Lam), and jaboticaba`s skin (Mirtus cauliflora Mart) were investigated. Dye-Cells prepared with aqueous mulberry extract presented the highest P(max) value (1.6 mW cm(-2)) with J(sc) = 6.14 mA cm(-2) and V(oc) = 0.49 V, Photoelectrochemical parameters of 16 cm(2) active area devices sensitized by mulberry dye were constant for 14 weeks of continuous evaluation. Moreover, the cell remained stable even after 36 weeks with a fairly good efficiency. Therefore, mulberry dye opens up a perspective of commercial feasibility for inexpensive and environmentally friendly Dye-Cells. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The borohydride oxidation reaction (BOR) was studied on Pt and Au electrodes by cyclic voltammetry in dilute alkaline borohydride solutions (0.1 M NaOH + 10(-3) mol L(-1) NaBH(4)). More specifically, the electrodes were considered as either Vulcan XC72-supported Pt or Au (noted as Pt/C and Au/C, respectively) active layers or smooth Pt or Au surfaces, the latter possibly being covered by a layer of (non-metalized) Vulcan XC72 carbon powder. The BOR onset potential and the number of electrons (n(e-)) exchanged per BH(4)(-) anion (faradaic efficiency) were investigated for these electrodes, to determine whether the residence time of reaction intermediates (at the electrode surface or inside the porous layer) does influence the overall reaction pathway/completion. For the carbon-supported platinum, n(e-) strongly depends on the thickness of the active layer. While thin (ca. 0.5 mu m-thick) Pt/C active layers yield n(e-) < 4, thick layers (approximately 3 mu m) yield n(e-)approximate to 8, which can be ascribed to the sufficient residence time of the molecules formed within the active layer (H(2), by heterogeneous hydrolysis, or BOR intermediates) enabling further (near-complete) oxidation. This puts into evidence that not only the nature of the electrocatalyst is important to reach high BOR efficiency, but also the structure/thickness of the active layer. The same trend applies for Au/C active layers and for smooth Pt or Au surfaces covered with a layer of (inactive) Vulcan XC72. In addition, the BOR onset usually shifts negative when the reaction intermediates are trapped, which suggests that some of the intermediates are more easily oxidized than BH(4)(-) itself; based on literature data, BH(3)OH(-) species is a likely candidate. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different compositions of visible-light-curable triethylene glycol dimethacrylate/bisglycidyl methacrylate copolymers used in dental resin formulations were prepared through copolymerization photoinitiated by a camphorquinone/ethyl 4-dimethylaminobenzoate system irradiated with an Ultrablue IS light-emitting diode. The obtained copolymers were evaluated with differential scanning calorimetry. From the data for the heat of polymerization, before and after light exposure, obtained from exothermic differential scanning calorimetry curves, the light polymerization efficiency or degree of conversion of double bonds was calculated. The glass-transition temperature also was determined before and after photopolymerization. After the photopolymerization, the glass-transi-tion temperature was not well defined because of the breadth of the transition region associated with the properties of the photocured dimethacrylate. The glass-transition temperature after photopolymerization was determined experimentally and compared with the values determined with the Fox equation. In all mixtures, the experimental value was lower than the calculated value. Scanning electron microscopy was used to analyze the morphological differences in the prepared copolymer structures. (C) 2007 Wiley Periodicals, Inc.