193 resultados para Location-aware process modeling
Resumo:
The cell provisioning and oviposition process (POP) is a unique characteristic of stingless bees (Meliponini), in which coordinated interactions between workers and queen regulate the filling of brood cells with larval resources and subsequent egg laying. Environmental conditions seem to regulate reproduction in stingless bees; however, little is known about how the amount of food affects quantitative sequences of the process. We examined intrinsic variables by comparing three colonies in distinct conditions (strong, intermediate and weak state). We predicted that some of these variables are correlated with temporal events of POP in Melipona scutellaris colonies. The results demonstrated that the strong colony had shorter periods of POP.
Resumo:
The photo-Fenton process (Fe(2+)/Fe(3+), H(2)O(2), UV light) is one of the most efficient and advanced oxidation processes for the mineralization of the organic pollutants of industrial effluents and wastewater. The overall rate of the photo-Fenton process is controlled by the rate of the photolytic step that converts Fe(3+) back to Fe(2+). In this paper, the effect of sulfate or chloride ions on the net yield of Fe(2+) during the photolysis of Fe(3+) has been investigated in aqueous solution at pH 3.0 and 1.0 in the absence of hydrogen peroxide. A kinetic model based on the principal reactions that occur in the system fits the data for formation of Fe(2+) satisfactorily. Both experimental data and model prediction show that the availability of Fe(2+) produced by photolysis of Fe(3+) is inhibited much more in the presence of sulfate ion than in the presence of chloride ion as a function of the irradiation time at pH 3.0.
Resumo:
National Science Foundation NSF IBN[0316697]
Resumo:
Background and Purpose: A nonfunctioning inflammatory kidney is a challenging surgical condition for urologists. Some investigators recommend open surgery because of the surgical difficulties caused by the inflammatory process, whereas others try to apply the advantages of a ""simple"" non-hand-assisted laparoscopic approach. We report our experience with simple laparoscopic nephrectomy for inflammatory kidney management. Patients and Methods: From July 2002 through December 2006, 50 pure laparoscopic nephrectomies were performed for inflammatory kidney ( 43 because of pyelonephritis, 5 for xanthogranulomatous pyelonephritis (XGP), and 2 for pyonephrosis). Histopathologic analysis was the criterion used for inflammatory kidney diagnosis. Pain or recurrent urinary tract infection associated with a nonfunctioning excluded kidney was the eligibility criterion for the procedure. Preoperatively, all patients underwent complete image and functional renal assessment. Morcellation was used to remove surgical specimens. Conversion index, surgical difficulties, operative time, and postoperative complications were evaluated. Results: Conversion was performed in 14 of 50 (28%) patients, including two with XGP and one with pyonephrosis. Adhesions, vascular (two inferior vena cava) lesions, and intestinal lesions (two colon) were the main causes of conversion. Acute pancreatitis developed in one patient, and one patient had a wound infection. Reoperations were unnecessary, and no deaths occurred. Conclusion: Pure laparoscopic nephrectomy was successful in 72% of patients with inflammatory kidneys. The laparoscopic dissection was useful even in those cases converted to open surgery. This is a high-risk procedure, however, and both surgeon and patient must be aware of that before the decision is made for this approach.
Resumo:
Background: Malaria is an important threat to travelers visiting endemic regions. The risk of acquiring malaria is complex and a number of factors including transmission intensity, duration of exposure, season of the year and use of chemoprophylaxis have to be taken into account estimating risk. Materials and methods: A mathematical model was developed to estimate the risk of non-immune individual acquiring falciparum malaria when traveling to the Amazon region of Brazil. The risk of malaria infection to travelers was calculated as a function of duration of exposure and season of arrival. Results: The results suggest significant variation of risk for non-immune travelers depending on arrival season, duration of the visit and transmission intensity. The calculated risk for visitors staying longer than 4 months during peak transmission was 0.5% per visit. Conclusions: Risk estimates based on mathematical modeling based on accurate data can be a valuable tool in assessing risk/benefits and cost/benefits when deciding on the value of interventions for travelers to malaria endemic regions.
Resumo:
Background: High-density tiling arrays and new sequencing technologies are generating rapidly increasing volumes of transcriptome and protein-DNA interaction data. Visualization and exploration of this data is critical to understanding the regulatory logic encoded in the genome by which the cell dynamically affects its physiology and interacts with its environment. Results: The Gaggle Genome Browser is a cross-platform desktop program for interactively visualizing high-throughput data in the context of the genome. Important features include dynamic panning and zooming, keyword search and open interoperability through the Gaggle framework. Users may bookmark locations on the genome with descriptive annotations and share these bookmarks with other users. The program handles large sets of user-generated data using an in-process database and leverages the facilities of SQL and the R environment for importing and manipulating data. A key aspect of the Gaggle Genome Browser is interoperability. By connecting to the Gaggle framework, the genome browser joins a suite of interconnected bioinformatics tools for analysis and visualization with connectivity to major public repositories of sequences, interactions and pathways. To this flexible environment for exploring and combining data, the Gaggle Genome Browser adds the ability to visualize diverse types of data in relation to its coordinates on the genome. Conclusions: Genomic coordinates function as a common key by which disparate biological data types can be related to one another. In the Gaggle Genome Browser, heterogeneous data are joined by their location on the genome to create information-rich visualizations yielding insight into genome organization, transcription and its regulation and, ultimately, a better understanding of the mechanisms that enable the cell to dynamically respond to its environment.
Resumo:
Objective: The purpose of this study was to evaluate the effects of low-level laser (LLL) energy on the clinical signs of inflammation and the cellular composition of synovial fluid (SF) in the inflamed knee of the rabbit. Background Data: There are few findings related to the effects of LLL on SF in inflammatory processes and there is little knowledge about the optimal parameters for reducing joint inflammation. Materials and Methods: Inflammation in the right knee of 36 rabbits was induced by intracapsular injection (0.2 mL) of Terebinthina commun (Tc). The animals were randomly assigned to three groups: acute experimental group (AEG), chronic experimental group (CEG), and control group (CG), which only received Tc. Each group was divided in two subgroups of six animals each. The AEG and CEG groups began to receive laser treatment 2 and 5 d after the induction of inflammation, respectively. Laser irradiation at a wavelength of 830 nm, power output of 77 mW, and power density of 27.5 W/cm(2) was applied daily for 7 d for either 0.12 sec or 0.32 sec, resulting in doses of 3.4 J/cm(2) and 8 J/cm(2), respectively. Body mass, joint perimeter, joint temperature, and the morphology of the SF were analyzed. Results: There was no statistically significant differences between groups in the body mass, joint perimeter, and SF morphology. Conclusion: Laser irradiation with the selected parameters produced only a few subtle differences in the inflammatory signs and the SF. The lack of effects may have been due to the short irradiation time.
Evaluation of Laser Phototherapy in the Inflammatory Process of the Rat's TMJ Induced by Carrageenan
Resumo:
Aim: The aim of this study was to evaluate, by light microscopy, the effects of laser phototherapy (LPT) at 780nm or a combination of 660 and 790 nm, on the inflammatory process of the rat temporomandibular joint (TMJ) induced by carrageen. Background: Temporomandibular disorders (TMDs) are frequent in the population and generally present an inflammatory component. Previous studies have evidenced positive effects of laser phototherapy on TMDs. However, its mechanism of action on the inflammation of the TMJ is not known yet. Materials and Methods: Eighty-five Wistar rats were divided into 9 groups: G1, Saline; G2, Saline + LPT IR; G3, Saline + LPT IR + R; G4, Carrageenan; G5, Carrageenan + LPT IR; G6, Carrageenan + LPT IR + R; G7, previous LPT + Carrageenan; G8, previous LPT + carrageenan + LPT IR; and G9, previous LPT + carrageenan + LPT IR + R, and then subdivided in subgroups of 3 and 7 days. After animal death, specimens were taken, routinely cut and stained with HE, Sirius Red, and Toluidine Blue. Descriptive analysis of components of the TMJ was done. The synovial cell layers were counted. Results: Injection of saline did not produced inflammatory reaction and the irradiated groups did not present differences compared to non-irradiated ones. After carrageenan injection, intense inflammatory infiltration and synovial cell layers proliferation were observed. The infrared irradiated group presented less inflammation and less synovial cell layers number compared to other groups. Previous laser irradiation did not improve the results. Conclusion: It was concluded that the LPT presented positive effects on inflammatory infiltration reduction and accelerated the inflammation process, mainly with IR laser irradiation. The number of synovial cell layers was reduced on irradiated group.
Resumo:
In 2002, the Brazilian Ministry of Education approved the official curricular guidelines for undergraduate courses in Brazil to be adopted by the nation's 188 dental schools. In 2005-06, the Brazilian Dental Education Association (BDEA) promoted workshops in forty-eight of the schools to verify the degree of transformation of the curriculum based on these guidelines. Among the areas analyzed were course philosophy (variables were v1: knowledge production based on the needs of the Brazilian Public Health System [BPHS]; v2: health determinants; and v3: postgraduate studies and permanent education); pedagogical skills (v4: curricular structure; v5: changes in pedagogic and didactic skills; and v6: course program orientation); and dental practice scenarios (v7: diversity of the scenarios for training/learning; v8: academic health care centers opened to the BPHS; and v9: participation of students in health care delivery for the population). The subjects consisted of faculty members (n=711), students (n=228), and employees (n=14). The results showed an incipient degree of curriculum transformation. The degree of innovation was statistically different depending on the type of university (public or private) for variables I, 2, 4, 5, 6, and 7. Private schools reported a higher level of innovation than public institutions. Resistance to transforming the dental curriculum according to the official guidelines may be linked to an ideological conception that supports the private practice model, continues to have faculty members direct all classroom activities, and prevents students from developing an understanding of professional practice as targeted towards the oral health needs of all segments of society.
Resumo:
We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM(2.5)) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.
Resumo:
Barium stars are optimal sites for studying the correlations between the neutron-capture elements and other species that may be depleted or enhanced, because they act as neutron seeds or poisons during the operation of the s-process. These data are necessary to help constrain the modeling of the neutron-capture paths and explain the s-process abundance curve of the solar system. Chemical abundances for a large number of barium stars with different degrees of s-process excesses, masses, metallicities, and evolutionary states are a crucial step towards this goal. We present abundances of Mn, Cu, Zn, and various light and heavy elements for a sample of barium and normal giant stars, and present correlations between abundances contributed to different degrees by the weak-s, mains, and r-processes of neutron capture, between Fe-peak elements and heavy elements. Data from the literature are also considered in order to better study the abundance pattern of peculiar stars. The stellar spectra were observed with FEROS/ESO. The stellar atmospheric parameters of the eight barium giant stars and six normal giants that we analyzed lie in the range 4300 < T(eff)/K < 5300, -0.7 < [Fe/H] <= 0.12 and 1.5 <= log g < 2.9. Carbon and nitrogen abundances were derived by spectral synthesis of the molecular bands of C(2), CH, and CN. For all other elements we used the atomic lines to perform the spectral synthesis. A very large scatter was found mainly for the Mn abundances when data from the literature were considered. We found that [Zn/Fe] correlates well with the heavy element excesses, its abundance clearly increasing as the heavy element excesses increase, a trend not shown by the [Cu/Fe] and [Mn/Fe] ratios. Also, the ratios involving Mn, Cu, and Zn and heavy elements usually show an increasing trend toward higher metallicities. Our results suggest that a larger fraction of the Zn synthesis than of Cu is owed to massive stars, and that the contribution of the main-s process to the synthesis of both elements is small. We also conclude that Mn is mostly synthesized by SN Ia, and that a non-negligible fraction of the synthesis of Mn, Cu, and Zn is owed to the weak s-process.
Resumo:
Several experimental studies have altered the phase relationship between photic and non-photic environmental, 24 h cycles (zeitgebers) in order to assess their role in the synchronization of circadian rhythms. To assist in the interpretation of the complex activity patterns that emerge from these ""conflicting zeitgeber'' protocols, we present computer simulations of coupled circadian oscillators forced by two independent zeitgebers. This circadian system configuration was first employed by Pittendrigh and Bruce (1959), to model their studies of the light and temperature entrainment of the eclosion oscillator in Drosophila. Whereas most of the recent experiments have restricted conflicting zeitgeber experiments to two experimental conditions, by comparing circadian oscillator phases under two distinct phase relationships between zeitgebers (usually 0 and 12 h), Pittendrigh and Bruce compared eclosion phase under 12 distinct phase relationships, spanning the 24 h interval. Our simulations using non-linear differential equations replicated complex non-linear phenomena, such as ""phase jumps'' and sudden switches in zeitgeber preferences, which had previously been difficult to interpret. Our simulations reveal that these phenomena generally arise when inter-oscillator coupling is high in relation to the zeitgeber strength. Manipulations in the structural symmetry of the model indicated that these results can be expected to apply to a wide range of system configurations. Finally, our studies recommend the use of the complete protocol employed by Pittendrigh and Bruce, because different system configurations can generate similar results when a ""conflicting zeitgeber experiment'' incorporates only two phase relationships between zeitgebers.
Resumo:
Complicated patterns showing various spatial scales have been obtained in the past by coupling Turing systems in such a way that the scales of the independent systems resonate. This produces superimposed patterns with different length scales. Here we propose a model consisting of two identical reaction-diffusion systems coupled together in such a way that one of them produces a simple Turing pattern of spots or stripes, and the other traveling wave fronts that eventually become stationary. The basic idea is to assume that one of the systems becomes fixed after some time and serves as a source of morphogens for the other system. This mechanism produces patterns very similar to the pigmentation patterns observed in different species of stingrays and other fishes. The biological mechanisms that support the realization of this model are discussed.
Resumo:
How information transmission processes between individuals are shaped by natural selection is a key question for the understanding of the evolution of acoustic communication systems. Environmental acoustics predict that signal structure will differ depending on general features of the habitat. Social features, like individual spacing and mating behavior, may also be important for the design of communication. Here we present the first experimental study investigating how a tropical rainforest bird, the white-browed warbler Basileuterus leucoblepharus, extracts various information from a received song: species-specific identity, individual identity and location of the sender. Species-specific information is encoded in a resistant acoustic feature and is thus a public signal helping males to reach a wide audience. Conversely, individual identity is supported by song features susceptible to propagation: this private signal is reserved for neighbors. Finally, the receivers can locate the singers by using propagation-induced song modifications. Thus, this communication system is well matched to the acoustic constraints of the rain forest and to the ecological requirements of the species. Our results emphasize that, in a constraining acoustic environment, the efficiency of a sound communication system results from a coding/decoding process particularly well tuned to the acoustic properties of this environment.
Resumo:
We describe an estimation technique for biomass burning emissions in South America based on a combination of remote-sensing fire products and field observations, the Brazilian Biomass Burning Emission Model (3BEM). For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. The burnt area is estimated from the instantaneous fire size retrieved by remote sensing, when available, or from statistical properties of the burn scars. The sources are then spatially and temporally distributed and assimilated daily by the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) in order to perform the prognosis of related tracer concentrations. Three other biomass burning inventories, including GFEDv2 and EDGAR, are simultaneously used to compare the emission strength in terms of the resultant tracer distribution. We also assess the effect of using the daily time resolution of fire emissions by including runs with monthly-averaged emissions. We evaluate the performance of the model using the different emission estimation techniques by comparing the model results with direct measurements of carbon monoxide both near-surface and airborne, as well as remote sensing derived products. The model results obtained using the 3BEM methodology of estimation introduced in this paper show relatively good agreement with the direct measurements and MOPITT data product, suggesting the reliability of the model at local to regional scales.