76 resultados para Killer yeasts
Resumo:
The role of natural killer (NK) T cells in the development of lupus-like disease in mice is still controversial. We treated NZB/W mice with anti-NK1.1 monoclonal antibodies (mAbs) and our results revealed that administration of either an irrelevant immunoglobulin G2a (IgG2a) mAb or an IgG2a anti-NK1.1 mAb increased the production of anti-dsDNA antibodies in young NZB/W mice. However, the continuous administration of an anti-NK1.1 mAb protected aged NZB/W mice from glomerular injury, leading to prolonged survival and stabilization of the proteinuria. Conversely, the administration of the control IgG2a mAb led to an aggravation of the lupus-like disease. Augmented titres of anti-dsDNA in NZB/W mice, upon IgG2a administration, correlated with the production of BAFF/BLyS by dendritic, B and T cells. Treatment with an anti-NK1.1 mAb reduced the levels of interleukin-16, produced by T cells, in spleen cell culture supernatants from aged NZB/W. Adoptive transfer of NK T cells from aged to young NZB/W accelerated the production of anti-dsDNA in recipient NZB/W mice, suggesting that NK T cells from aged NZB/W are endowed with a B-cell helper activity. In vitro studies, using purified NK T cells from aged NZB/W, showed that these cells provided helper B-cell activity for the production of anti-dsDNA. We concluded that NK T cells are involved in the progression of lupus-like disease in mature NZB/W mice and that immunoglobulin of the IgG2a isotype has an enhancing effect on antibody synthesis due to the induction of BAFF/BLyS, and therefore have a deleterious effect in the NZB/W mouse physiology.
Resumo:
Background Metastatic renal cell carcinoma (mRCC) is one of the most treatment-resistant malignancies. Despite all new therapeutic advances, almost all patients develop resistance to treatment and cure is rarely seen. In the present study, we evaluated the antitumor effect of a bicistronic retrovirus vector encoding both endostatin (ES) and interleukin (IL)-2 using an orthotopic metastatic RCC mouse model. Methods Balb/C-bearing Renca cells were treated with NIH/3T3-LendIRES-IL-2-SN cells. In the survival studies, mice were monitored daily until they died. At the end of the in vivo experiment, serum levels of IL-2 and ES were measured, the lung was weighed, and the number of metastatic nodules, nodule area, tumor vessels and proliferation of tumor-infiltrating Renca cells were determined. Results Inoculation of NIH/3T3-LendIRES-IL-2-SN cells resulted in an increase in ES and IL-2 levels in the treated group (p < 0.05). There was a significant decrease in lung wet weight, lung nodule area and tumor vessels in the treated group compared to the control group (p < 0.001). The proliferation of Renca cells in the bicistronic-treated group was significantly reduced compared to the control group (p < 0.05). Kaplan-Meier survival curves showed that the probability of survival was significantly higher for mice submitted to bicistronic therapy (log-rank test, p = 0.0016). Bicistronic therapy caused an increase in the infiltration of CD4, CD4 interferon (IFN)gamma-producing, CD8, CD8 IFN gamma-producing and natural killer (CD49b) cells. Conclusions Retroviral bicistronic gene transfer led to the secretion of functional ES and IL-2 that was sufficiently active to: (i) inhibit tumor angiogenesis and tumor cell proliferation and (ii) increase the infiltration of immune cells (C) Copyright. 2011 John Wiley & Sons, Ltd.
Resumo:
This is a retrospective observational study of clinical and epidemiologic data from bloodstream yeast infections over 5 years (2004-2008) in a tertiary-care hospital. During this period, there were 52 such infections, at a rate of 2.4 per 1,000 hospital admissions. Non-C. albicans Candida species and other genera were responsible for 82% of infections, with C. tropicalis and C. parapsilosis being the most common. In 2008 no C. albicans infections occurred. Several uncommon fungal pathogens were observed, including Trichosporon asahii, Rhodotorula spp. and Candida zeylanoides. Of 16 isolates tested, 3 (19%) were resistant to fluconazole, including one C. zeylanoides (MIC 8 mu g/ml) and one C. tropicalis (MIC 16 mu g/ml) isolate, as well as intrinsically resistant C. krusei. All isolates tested were susceptible to itraconazole (n = 7) and amphotericin B (n = 8). Yeast infections were associated with severe underlying diseases, mainly hematological/solid cancers (71%), hospitalization in the ICU (41%), central venous catheters (80%), and use of antimicrobials (94%). The overall mortality rate was 50%. Our finding of a predominance of non-C. albicans Candida species infection with uncommon yeasts, and fluconazole resistance, suggests the need for continuous surveillance of fungemia and of antibiotic susceptibility trends, in order to adopt treatment strategies applicable to particular healthcare institutions.
Resumo:
A biofilm is a complex community of surface-associated cells enclosed in a polymer matrix. They attach to solid surfaces and their formation can be affected by growth conditions and co-infection with other pathogens. The presence of biofilm may protect the microorganisms from host defenses, as well as significantly reduce their susceptibility to antifungal agents. Pathogenic microbes can form biofilms on the inert surfaces of implanted devices such as catheters, prosthetic cardiac valves and intrauterine devices (IUDs). The present study was carried out to analyze the presence of biofilm on the surface of intrauterine devices in patients with recurrent vulvovaginal candidiasis, and to determine the susceptibility profile of the isolated yeasts to amphotericin B and fluconazole. Candida albicans was recovered from the IUDs and it was found to be susceptible to the antifungal agents when tested under planktonic growing conditions. These findings indicate the presence of the biofilm on the surface of the IUD as an important risk factor for recurrent vulvovaginal candidiasis.
Resumo:
The emergence of less common fungal pathogens has been increasingly reported in the last decade. We describe 25 cases of Rhodotorula spp. isolated from blood cultures at a large Brazilian tertiary teaching hospital from 1996-2004. We also investigated the in vitro activity of four antifungal drugs, using a standardized method. The median age of patients was 43 years. The majority of patients (88%) had a central venous catheter (CVC) and 10 (40%) were recipients of a bone marrow transplant. The episode was classified as a bloodstream infection (BSI) in 80% of the patients. Amphotericin B deoxycholate was the most common antifungal used and CVC was removed in 89.5% of the patients. Death occurred in four patients (17.4%), all classified as BSI. All strains were identified as R. mucilaginosa by conventional methods. Misidentification of the species was observed in 20% and 5% of the strains with the Vitek Yeast Biochemical Card and API 20C AUX systems, respectively. Amphotericin B demonstrated good in vitro activity (MIC(50/90), 0.5 mu g/ml) and the MICs for fluconazole were high for all strains (MIC(50/90), 64 mu g/ml).
Resumo:
The aim of the current study was to investigate the apoptosis of neurons, astrocytes and immune cells from human patients that were infected with rabies virus by vampire bats bite. Apoptotic neurons were identified by their morphology and immune cells were identified using double immunostaining. There were very few apoptotic neurons present in infected tissue samples, but there was an increase of apoptotic infiltrating CD4+ and TCD8+ adaptive immune cells in the rabies infected tissue. No apoptosis was present in NK, macrophage and astrocytes. The dissemination of the human rabies virus within an infected host may be mediated by viral escape of the virus from an infected cell and may involve an anti-apoptotic mechanism, which does not kill the neuron or pro-apoptosis of TCD4+ and TCD8+ lymphocytes and which allows for increased proliferation of the virus within the CNS by attenuation of the adaptive immune response. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: CD8+ T cells and natural killer (NK) cells are involved in the immune response against some pathogens. For this purpose, we investigated the in situ paracoccidioidomycosis (PCM) immune response addressing the participation of NK cells, CD8+ T cells, perforin and granzyme B expression. Methods: Sixty biopsies of PCM skin and mucosa were classified according to the presence of compact granulomas (G1), poorly organized granulomas (G2) and both kinds in the same lesion (G3). CD8+ T cells, NK cells, perforin and granzyme B were showed by immunohistochemistry. Results: CD8+ T cells were increased over NK cells in cutaneous G1 and G2 lesions. There was no difference regarding such cells in G3 lesions, although they were abundant in such lesions. In mucosa, CD8+ T cells were increased in number over NK cells in all groups. Granzyme B in skin increased in G2 and G3. The number of granzyme did not differ in mucosal lesions in the three groups. Conclusions: CD8+ T cells and NK cells play a role in PCM cutaneous and mucosal lesions. The predominance of CD8+ T cells over NK cells may represent an effective response against the fungi. Moreover, the high number of granzyme B expressing cells corroborates this possibility.
Resumo:
Background: GH insensitivity (GHI) syndrome caused by STAT5B mutations was recently reported, and it is characterized by extreme short stature and immune dysfunction. Treatment with recombinant human IGF1 (rhIGF1) is approved for patients with GHI, but the growth response to this therapy in patients with STAT5B mutations has not been reported. Objectives: To report the clinical features, molecular findings, and the short-term growth response to rhIGF1 therapy in patients with STAT5B mutation. Subjects and methods: Hormonal and immunological evaluations were performed in two male siblings with GHI associated with atopic eczema, interstitial lung disease, and thrombocytopenic purpura. STAT5B genes were directly sequenced. The younger sibling was treated with rhIGF1 at a dose of 110 mu g/kg BID. Results: Both siblings had laboratory findings compatible with GHI associated with hyperprolactinemia. Lymphopenia and reduced number of natural killer cells without immunoglobulin abnormalities were observed. STAT5B sequence revealed a homozygous frameshift mutation (p.L142fsX161) in both siblings. The younger sibling (9.9 years of age) was treated with rhIGF1 at appropriate dosage, and he did not present any significant change in his growth velocity (from 2.3 to 3.0 cm/year after 1.5 years of therapy). The presence of a chronic illness could possibly be responsible for the poor result of rhIGF1 treatment. Further studies in patients with STAT5B defects are necessary to define the response to rhIGF1 treatment in this disorder. Conclusion: GHI associated with immune dysfunction, especially interstitial lung disease, and hyperprolactinemia is strongly suggestive of a mutation in STAT5B in both sexes.
Resumo:
The morphologic appearance and clinical behavior of the human urinary bladder papillary transitional cell carcinoma (TCC) probably result from a complex interaction between carcinogenic insults and host resistance during the patient`s life. While the main recognized risk factors are of environmental origin (e.g. smoking), relatively little information exists about the susceptibility to TCC development. The human leukocyte antigen G (HLA-G) molecule plays an important role in immune response regulation and has been implicated in the inhibition of the cytolytic function of natural killer and cytotoxic T cells. Several lines of evidence indicate that HLA-G polymorphisms influence the expression level and production of different HLA-G isoforms. The aim of this study was to explore a possible influence of the HLA-G polymorphism on the susceptibility to urinary bladder TCC development and progression in smokers and nonsmokers Brazilian subjects. The HLA-G locus was found to be associated with susceptibility to TCC development and progression. The G*0104 allelic group (specially the G*010404 allele) and the G*0103 allele were associated with a tobacco-dependent influence on TCC development. The G*0104 group was associated with progression to high-grade tumors, irrespective of smoking habit, while the G*0103 allele was associated to high-grade tumor only in smoking patients. Our results are an evidence that the HLA-G locus itself, or as part of an extended haplotype encompassing this chromosome region (particularly the HLA-A given the high linkage disequilibrium observed between them in this data series), may be associated with TCC susceptibility and tumor progression, suggesting a tobacco-dependent influence of these polymorphisms.
Resumo:
Background Hypersensitivity or uncontrolled responses against dietary antigens can lead to inflammatory disorders like food allergy and current models reflect a variety of causes but do not reveal the detailed modulation of gut immunity in response to food antigens after breakdown in mucosal tolerance. Objective To develop and characterize a murine model for food-induced intestinal inflammation and to demonstrate the modulation of gut immune response by dietary allergenic antigens. Methods C57BL/6 mice were sensitized with peanut proteins, challenged with peanut seeds and their sera and gut segments were collected for subsequent analyses. Results Sensitization and challenged with peanut seeds led to alterations in gut architecture with inflammatory response characterized by oedema in lamina propria and cell infiltrate composed mainly by eosinophils, mast cells, phagocytes, natural killer and plasma cells, together with low percentage of gamma delta(+) and CD4(+)CD25(+)Foxp3(+) cells in Peyer`s patches. These animals also presented high levels of specific IgE and IgG1 in sera and modulation of mucosal immunity was mediated by increased expression of GATA-3, IL-4, IL-13 and TNF-alpha in contrast to low IFN-gamma in the gut. Conclusion A murine model for food-induced intestinal inflammation was characterized in which modulation of gut immunity occurs by peanut antigens in consequence of T-helper type 2 (Th2) allergic response and failure of regulatory mechanisms necessary for mucosa homeostasis, resembling food allergy. This work shed some light on the understanding of the pathogenesis of gastrointestinal disorders and intolerance in the gut and supports the development of therapies for food-related enteropathies like food allergy, focusing on gut-specific immune response.
Resumo:
The HLA-G gene is predominantly expressed at the maternal-fetal interface. It has been associated with maternal-fetal tolerance and in the inhibition of cytotoxic T lymphocyte and natural killer cytolytic functions. At least two variations in the 3` untranslated region (UTR) of HLA-G locus are associated with HLA-G expression levels, the 14-bp deletion/insertion polymorphism and the +3142 single-nucleotide polymorphism (SNP). However, this region has not been completely characterized yet. The variability of the 3`UTR of HLA-G gene and its haplotype structure were characterized in 155 individuals from Brazil, as well as HLA-G alleles associated with each of the 3`UTR haplotype. The following eight variation sites were detected: the 14-bp polymorphism and SNPs at the positions +3003T/C, +3010C/G, +3027A/C, +3035C/T, +3142G/C, +3187A/G and +3196C/G. Similarly, 11 different 3`UTR haplotypes were identified and several HLA-G alleles presented only one 3`UTR haplotype. In addition, a high linkage disequilibrium among the variation sites was detected, especially among the 14-bp insertion and the alleles +3142G and +3187A, all previously associated with low mRNA availability, demonstrating that their effects are not independent. The detailed analyses of 3`UTR of the HLA-G locus may shed some light into mechanisms underlying the regulation of HLA-G expression. Genes and Immunity (2010) 11, 134-141; doi: 10.1038/gene.2009.74; published online 1 October 2009
Resumo:
Some cases of T-cell acute lymphoblastic leukaemia (ALL) express markers found in natural-killer (NK) cells, such as CD56 and CD16. Out of 84 T-cell ALL cases diagnosed at our Institution, CD56 and/or CD16 was detected in 24 (28.5%), which we designated T/NK-ALL group. Clinical features, laboratory characteristics, survival and expression of cytotoxic molecules were compared in T/NK-ALL and T-ALL patients. Significant differences were observed regarding age (24.9 vs. 16.4 years in T/NK-ALL and T-ALL, respectively, P = 0.006) and platelet counts (177 x 10(9)/l vs. 75 x 10(9)/l in T/NK-ALL and T-ALL, respectively, P = 0.03). Immunophenotypic analysis demonstrated that CD34, CD45RA and CD33 were more expressed in T/NK-ALL patients, whereas CD8 and terminal deoxynucleotidyl transferase were more expressed in T-ALL patients (P < 0.05). The mean overall survival (863 vs. 1869 d, P = 0.02) and disease-free survival (855 vs. 2095 d, P = 0.002) were shorter in patients expressing CD56/CD16. However, multivariate analysis identified CD56/CD16 as an independent prognostic factor only for DFS. Cytotoxic molecules were highly expressed in T/NK-ALL compared to T-ALL. Perforin, granzyme B and TIA-1 were detected in 12/17, 4/17 and 7/24 T/NK-ALL patients and in 1/20, 0/20 and 1/20 T-ALL respectively (P < 0.001, P = 0.036 and P = 0.054). Therefore, the presence of CD56/CD16 was associated with distinct clinical features and expression of cytotoxic molecules in the blasts.
Resumo:
This study was designed to compare cutaneous mycoflora isolation and CD4+:CD8+ ratio in feline immunodeficiency virus (FIV)-infected cats with that in FIV-uninfected cats. Sixty cats were examined. Twenty-five were Fly-infected cats and 35 were RV-uninfected cats. All 60 cats were FeLV-negative. Fungi were speciated and immunophenotyping of peripheral CD4+ and CD8+ T lymphocytes was performed. At least one fungal colony was isolated from 22/25 (88%) FIV-infected cats. Among the FIV-uninfected cats fungal colonies were recovered from 13/35 (37%) specimens. Dermatophytes were recovered from 2/25 (8%) FIV-infected cats (one Microsporum gypseum, one Microsporum can is) and 3/35 (8.5%) FIV-uninfected cats (M gypseum). Malassezia species was the most commonly isolated organism from both groups of cats (51.6%). Malassezia species was more commonly isolated from FIV-infected cats than RV-uninfected cats (84% vs 28.6%). The CD4+ to CD8+ lymphocyte ratio for FIV-infected cats was significantly lower than the CD4+ to CD8+ ratio in the FIV-uninfected cats. The CD4+ to CD8+ lymphocyte ratio for FIV-infected cats with cutaneous overall fungal isolation was significantly lower than the CD4:CD8 lymphocyte ratio in the FIV-infected cats but without cutaneous fungal isolation. We can conclude that immunologic depletion due to retroviral infection might represent a risk factor to cutaneous fungal colonization in cats. (C) 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.
Resumo:
We have previously shown that bracken fern (Pteridium aquilinum) has immunomodulatory effects on mouse natural killer (NK) cells by reducing cytotoxicity. Alternatively, it has been demonstrated that selenium can enhance NK cell activity. Therefore, the aims of the present study were to evaluate if ptaquiloside, the main toxic component found in P. aquilinum, is responsible for the immunotoxic effects observed in mice, and if selenium supplementation could prevent or even reverse these effects. Male C57BL/6 mice were administered the P. aquilinum extract by daily gavage for 30 days, and histological analyses revealed a significant reduction in splenic white pulp area that was fully reversed by selenium treatment. In addition, mice administered ptaquiloside by daily gavage for 14 days demonstrated the same reduction of NK cell activity as the P. aquilinum extract, and this reduction was prevented by selenium co-administration. Lastly, non-adherent splenic cells treated in vitro with an RPM! extract of P. aquilinum also showed diminished NM cell activity that was not only prevented by selenium co-treatment but also fully reversed by selenium post-treatment. The results of this study clearly show that the immunosuppressive effects of P. aquilinum are induced by ptaquiloside and that selenium supplementation can prevent as well as reverse these effects. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Ipomoea cameo Jacq. ssp. fistulosa (Mart. Ex Choisy; Convolvulaceae; I. cameo) possesses a toxic component: an indolizidine alkaloid swainsonine (SW) that has immunomodulatory effects due to its inhibition of glycoprotein metabolism. It is also known that SW is excreted into both the amniotic fluid and milk of female rats exposed to I. cameo. Thus, the aim of this study was to determine whether SW exposure, either in utero or from the milk of dams treated with I. cornea, modulates offspring immune function into adulthood. In addition, adult (70 days old) and juvenile rats (21 days old) were exposed to I. cameo in order to evaluate several other immune parameters: lymphoid organs relative weight and cellularity, humoral and cellular immune responses. Offspring exposed to I. cornea during lactation developed rheumatoid arthritis (RA) in adulthood after an immunogenic challenge. In addition, both adult and juvenile rats exposed to I. cameo showed discrepancies in several immune parameters, but did not exhibit any decrease in humoral immune response, which was enhanced at both ages. These findings indicate that SW modulates immune function in adult rats exposed to SW during lactation and in juvenile and adult rats exposed to SW as juveniles and adults, respectively.