88 resultados para Hand transport component
Resumo:
The consumption of protein supplements containing amino acids is increasing around the world Aspartate (Asp) and asparagine (Asn) are amino acids metabolized by skeletal muscle. This metabolism involves biochemical pathways that are involved in increasing Krebs cycle activity via anaplerotic reactions. resulting in higher glutamine concentrations. A connection between amino acid supplementation, glycogen concentration, and glucose uptake has been previously demonstrated. The purpose of this study was to evaluate the effect of asp and Asn Supplementation on glucose uptake in rats using three different glycogen concentrations The results indicate that Asp and Asn supplementation in rats with high glycogen concentrations (fed state) further increased the glycogen concentration in the muscle, and decreased in vitro 2-deoxyglucose (a glucose analog.) uptake by the muscle at maximal insulin concentrations When animals had a medium glycogen concentration (consumed lard for 3 days). glucose uptake was higher in the supplemented group at sub-maximal insulin concentrations. We conclude that supplementation of Asp and Asn reduced glucose transport in rat muscle only at higher levels of glycogen. The ingestion of lard for 3 days changed the responsiveness and sensitivity to insulin, and that group had higher levels of insulin sensivity with Asp and Asn supplementation. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
In the present study, it was evaluated how two different culture conditions for the biotreatment of Eucalyptus grandis by Ceriporiopsis subvermispora affect a subsequent high-yield kraft pulping process. Under the varied culture conditions investigated, different extracellular enzyme activities were observed. Manganese-peroxidase (MnP) secretion was 3.7 times higher in cultures supplemented with glucose plus corn-steep liquor (glucose/CSL) as compared to non-supplemented (NS) cultures. The biotreated samples underwent diverse levels of wood component degradation as losses of weight and lignin were increased in glucose/CSL cultures. Mass balances for lignin removal during kraft pulping showed that delignification was facilitated when both biotreated wood samples were cooked. Delignification efficiency did not correlate positively with MnP levels in the cultures. On the other hand, biopulps from NS and glucose/CSL cultures saved 27% and 38% beating time to achieve 288 Schopper-Riegler freeness during refining, respectively. Biopulps disposed of decreased tensile and tear resistances, thus easier refining of the biokraft pulps seems to be a consequence of less resistant fiber walls. Improved beatability of biopulps was tentatively related to short fibers and fines formation during refining. We suggest that to some extent polysaccharide depolymerization occurred during the biotreatment, which also resulted in diminished pulp yields in the case of glucose/CSL cultures.
Resumo:
Mass transfer across a gas-liquid interface was studied theoretically and experimentally, using transfer of oxygen into water as the gas-liquid system. The experimental results support the conclusions of a theoretical description of the concentration field that uses random square waves approximations. The effect of diffusion over the concentration records was quantified. It is shown that the peak of the normalized rills concentration fluctuation profiles must be lower than 0.5, and that the position of the peak of the rms value is an adequate measure of the thickness of the diffusive layer. The position of the peak is the boundary between the regions more subject to molecular diffusion or to turbulent transport of dissolved mass.
Resumo:
High urban transport energy consumption is directly influenced by transport energy dependence. Dramatic reductions in urban transport energy dependence or consumption are not yet being widely observed despite the variety of urban planning tools currently available. A new urban development framework is presented to tackle this issue that makes use of a recently developed and successfully trialed GIS-based tool, the Transport Energy Specification (TES). The TES was simulated on a neighborhood in Sao Carlos, Brazil. In the simulation, energy dependence was reduced by a factor of 8 through activity location or infrastructure modifications to the built environment.
Resumo:
Nanocomposite membranes containing polysulfone (PSI) and sodium montmorillonite from Wyoming (MMT) were prepared by a combination of solution dispersion and the immersion step of the wet-phase inversion method. The purpose was to study the MMT addition with contents of 0.5 and 3.0 mass% MMT in the preparation of nanocomposite membranes by means of morphology, thermal, mechanical and hydrophilic properties of nanocomposite membranes and to compare these properties to the pure PSf membrane ones. Small-angle X-ray diffraction patterns revealed the formation of intercalated clay mineral layers in the PSf matrix and TEM images also presented an exfoliated structure. A good dispersion of the clay mineral particles was detected by SEM images. Tensile tests showed that both elongation at break and tensile strength of the nanocomposites were improved in comparison to the pristine PSf. The thermal stability of the nanocomposite membranes, evaluated by onset and final temperatures of degradation, was also enhanced. The hydrophilicity of the nanocomposite membranes, determined by water contact angle measurements, was higher; therefore, the MMT addition was useful to produce more hydrophilic membranes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
There are many industrial advantages of using mechanical multi-oxides mixtures to obtain ceramic parts by electrophoretic deposition (EPD). This is mainly because one could avoid complex chemical synthesis routes to achieve a desirable composition. However, EPD of these suspensions is not an easy task as well since many different surfaces are present, leading to unexpected suspension behavior. The particles surface potentials and interactions can, however, be predicted by an extension of the DLVO theory. Using this theory, one can control the suspension properties and particles distribution. The objective of this work was to apply the colloidal chemistry theories to promote the formation of a heterocoagulation between ZrO(2) and Y(2)O(3) particles in ethanol suspension to achieve a suitable condition for EPD. After identifying a condition where those particles had opposite surface charges and adequate relative sizes, heterocoagulation was observed at operational pH 7.5, generating an organized agglomerate with ZrO(2) particles surrounding Y(2)O(3), with a net zeta potential of -16.6 mV. Since the agglomerates were stable, EPD could be carried out and homogeneous deposits were obtained. The deposited bodies were sintered at 1600 A degrees C for 4 h and partially stabilized ZrO(2) could be obtained without traces of Y(2)O(3) second phases.
Resumo:
The canonical representation of speech constitutes a perfect reconstruction (PR) analysis-synthesis system. Its parameters are the autoregressive (AR) model coefficients, the pitch period and the voiced and unvoiced components of the excitation represented as transform coefficients. Each set of parameters may be operated on independently. A time-frequency unvoiced excitation (TFUNEX) model is proposed that has high time resolution and selective frequency resolution. Improved time-frequency fit is obtained by using for antialiasing cancellation the clustering of pitch-synchronous transform tracks defined in the modulation transform domain. The TFUNEX model delivers high-quality speech while compressing the unvoiced excitation representation about 13 times over its raw transform coefficient representation for wideband speech.
Resumo:
We report on the detection of the transport Barkhausen-like noise (TBN) in polycrystalline samples of Bi(1.65)Pb(0.35)Sr(2)Ca(2) Cu(3)O(10+delta) (Bi-2223) which were subjected to different uniaxial compacting pressures. The transport Barkhausen-like noise was measured when the sample was subjected to an ac triangular-shape magnetic field (f similar to 1 Hz) with maximum amplitude B(max) approximate to 5.5 mT, in order to avoid the flux penetration within the superconducting grains. Analysis of the TBN signal, measured for several values of excitation current density, indicated that the applied magnetic field in which the noise signal first appears, B(a)(t(i)), is closely related to the magnetic-flux pinning capability of the material. The combined results are consistent with the existence of three different superconducting levels within the samples: (i) the superconducting grains; (ii) the superconducting clusters; and (iii) the weak-links. We finally argue that TBN measurements constitute a powerful tool for probing features of the intergranular transport properties in polycrystalline samples of high-T(c) superconductors. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Experimental and theoretical studies on the magnetic field dependence of the electrical resistance R(B(a)) and the transport noise (TN) in polycrystalline high-T(c) superconductors subjected to different uniaxial compacting pressures were conducted. X-ray diffraction rocking curves were performed in different surfaces of the samples in order to investigated the degree of texture The results indicated an improvement of the degree of texture with increasing the uniaxial compacting pressure In theoretical simulations of the data, the polycrystalline superconductors were described as a series-parallel array of Josephson devices The intergranular magnetic field is described within the framework of the intragranular flux-trapping model and the distribution of the grain-boundary angles is assumed to follow the Rayleigh statistical function The proposed model describes well the experimental magnetoresistance R(B(a)) data We have found that the behavior of the R(B(a)) curves changes appreciably when different uniaxially compacting pressures are applied to the sample and such a changes are reproduced by the model when different grain-boundary angles distributions are used In addition, changes in the R(B(a)) dependence have their counterparts in the experimental transport noise signals (C) 2009 Elsevier B.V. All rights reserved
Resumo:
Fruit-set in tomato (Solanum lycopersicum) depends on gibberellins and auxins (GAs). Here, we show, using the cv MicroTom, that application of N-1-naphthylphthalamic acid (NPA; an inhibitor of auxin transport) to unpollinated ovaries induced parthenocarpic fruit-set, associated with an increase of indole-3-acetic acid (IAA) content, and that this effect was negated by paclobutrazol (an inhibitor of GA biosynthesis). NPA-induced ovaries contained higher content of GA(1) (an active GA) and transcripts of GA biosynthetic genes (SlCPS, SlGA20ox1, and -2). Interestingly, application of NPA to pollinated ovaries prevented their growth, potentially due to supraoptimal IAA accumulation. Plant decapitation and inhibition of auxin transport by NPA from the apical shoot also induced parthenocarpic fruit growth of unpollinated ovaries. Application of IAA to the severed stump negated the plant decapitation effect, indicating that the apical shoot prevents unpollinated ovary growth through IAA transport. Parthenocarpic fruit growth induced by plant decapitation was associated with high levels of GA(1) and was counteracted by paclobutrazol treatment. Plant decapitation also produced changes in transcript levels of genes encoding enzymes of GA biosynthesis (SlCPS and SlGA20ox1) in the ovary, quite similar to those found in NPA-induced fruits. All these results suggest that auxin can have opposing effects on fruit-set, either inducing (when accumulated in the ovary) or repressing (when transported from the apical shoot) that process, and that GAs act as mediators in both cases. The effect of NPA application and decapitation on fruit-set induction was also observed in MicroTom lines bearing introgressed DWARF and SELF-PRUNING wild-type alleles.
Resumo:
Bidirectional transport studies were conducted using Caco-2, MDCK, and MDCK-MDR1 to determine P-gp influences in lamivudine and zidovudine permeability and evaluate if zidovudine permeability changes with the increase of zidovudine concentration and/or by association of lamivudine. Transport of lamivudine and zidovudine separated and coadministrated across monolayers based on these cells were quantified using LC-MS-MS. Drug efflux by P-gp was inhibited using GG918. Bidirectional transport of lamivudine and zidovudine was performed across MDCK-MDR1 and Caco-2 cells. Statistically significant transport decrease in B -> A direction was observed using MDCK-MDR1 for zidovudine and MDCK-MDR1 and Caco-2 for lamivudine. Results show increased transport in B -> A and A -> B directions as concentration increases but data from P(app) increase in both directions for both drugs in Caco-2, decrease in MDCK, and does not change significantly in MDCK-MDR1. Zidovudine transport in A -> B direction increases when coadministrated with increasing lamivudine concentration but does not change significantly in B -> A direction. Zidovudine and lamivudine are P-gp substrates, but results assume that P-gp does not affect significantly lamivudine and zidovudine. Their transport in monolayers based on Caco-2 cells increase proportionally to concentration (in both directions) and zidovudine transport in Caco-2 cell monolayer does not show significant changes with lamivudine increasing concentrations. (C) 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4413-4419, 2009
Resumo:
The postharvest development of crown rot of bananas depends notably on the fruit susceptibility to this disease at harvest. It has been shown that fruit susceptibility to crown rot is variable and it was suggested that this depends on environmental preharvest factors. However, little is known about the preharvest factors influencing this susceptibility. The aim of this work was to evaluate the extent to which fruit filling characteristics during growth and the fruit development stage influence the banana susceptibility to crown rot. This involved evaluating the influence of (a) the fruit position at different levels of the banana bunch (hands) and (b) changing the source-sink ratio (So-Si ratio), on the fruit susceptibility to crown rot. The fruit susceptibility was determined by measuring the internal necrotic surface (INS) after artificial inoculation of Colletotrichum musae. A linear correlation (r = -0.95) was found between the hand position on the bunch and the INS. The So-Si ratio was found to influence the pomological characteristics of the fruits and their susceptibility to crown rot. Fruits of bunches from which six hands were removed (two hands remaining on the bunch) proved to be significantly less susceptible to crown rot (INS = 138.3 mm 2) than those from bunches with eight hands (INS = 237.9 mm 2). The banana susceptibility to crown rot is thus likely to be influenced by the fruit development stage and filling characteristics. The present results highlight the importance of standardising hand sampling on a bunch when testing fruit susceptibility to crown rot. They also show that hand removal in the field has advantages in the context of integrated pest management, making it possible to reduce fruit susceptibility to crown rot while increasing fruit size.
Resumo:
We have used two different probes with distinct detection properties, dichlorodihydrofluorescein diacetate and Amplex Red/horseradish peroxidase, as well as different respiratory substrates and electron transport chain inhibitors, to characterize the reactive oxygen species (ROS) generation by the respiratory chain in calcium-overloaded mitochondria. Regardless of the respiratory substrate, calcium stimulated the mitochondrial generation of ROS, which were released at both the mitochondrial-matrix side and the extramitochondrial space, in a way insensitive to the mitochondrial permeability transition pores inhibitor cyclosporine A. In glutamate/malate-energized mitochondria, inhibition at complex I or complex III (ubiquinone cycle) similarly modulated ROS generation at either mitochondrial-matrix side or extramitochondrial space; this also occurred when the backflow of electrons to complex I in succinate-energized mitochondria was inhibited. On the other hand, in succinate-energized mitochondria the modulation of ROS generation at mitochondrial-matrix side or extra-mitochondrial space depends on the site of complex III which was inhibited. These results allow a straight comparison between the effects of different respiratory substrates and electron transport chain inhibitors on ROS generation at either mitochondrial-matrix side or extra-mitochondrial space in calcium-overloaded mitochondria.
Resumo:
Scorpion stings are a public health problem in Brazil, with most incidents involving the species Tityus serrulatus. Some T serrulatus toxins may act as immunogens for the production of a specific anti-venom, but many of the component toxins remain poorly characterized. Here, we describe the immunological characteristics of the toxin Ts1 (also known as TsVII and Ts-gamma) and evaluate production of neutralizing antibodies against the crude venom of T serrulatus. Recombinant Ts1 with one copy (Ts1((1))) or two copies in tandem (Ts1((2))) was expressed in BL21 (DE3) cells. Rabbits and mice were immunized with the recombinant proteins (inclusion bodies) and then tested for production of neutralizing antibodies. Neutralization assays showed that anti-Ts1((1)) and anti-Ts1((2)) protected animals challenged with T serrulatus crude venom and native Ts1 Thus, Ts1 could be used in a mixed ""cocktail"" of immunogens for T serrulatus anti-venom production. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In vivo preventive effects of a Mangifera indica L extract (Vimang) or its major component mangiferin on iron overload injury have been studied in rats given respectively, 50, 100, 250 mg kg(-1) body weight of Vimang, or 40 mg kg(-1) body weight of mangiferin, for 7 days prior to, and for 7 days following the administration of toxic amounts of iron-dextran. Both Vimang or mangiferin treatment prevented iron overload in serum as well as liver oxidative stress, decreased serum and liver lipid peroxidation, serum GPx activity, and increased serum and liver GSH, serum SOD and the animals overall antioxidant condition. Serum iron concentration was decreased although at higher doses, Vimang tended to increase it; percent tranferrin saturation, liver weight/body mass ratios, liver iron content was decreased. Treatment increased serum iron-binding capacity and decreased serum levels of aspartate-amine transferase (ASAT) and alanine-amine transferase (ALAT), as well as the number of abnormal Kupffer cells in iron-loaded livers. It is suggested that besides acting as antioxidants, Vimang extract or its mangiferin component decrease liver iron by increasing its excretion. Complementing earlier in vitro results from our group, it appears possible to support the hypothesis that Vimang and mangiferin present therapeutically useful effects in iron overload related diseases. (C) 2007 Elsevier Ltd. All rights reserved.