187 resultados para Genetic tests
Resumo:
The objective of the present study was to estimate (co)variance components for length of productive life (LPL) and some alternative reproductive traits of 6-year-old Nellore cattle. The data set contained 57,410 records for age at first calving from Nellore females and was edited to remove animal records with uncertain paternity and cows with just one piece of calving information. Only animals with age at first calving ranging from 23 to 48 months and calving intervals between 11 and 24 months were kept for analysis. LPL and life production ( LP) were used to describe productive life. LPL was defined as the number of months a cow was kept in the herd until she was 6 years old, given that she was alive at first calving and LP was defined as total number of calves in that time. Four traits were used to describe reproductive traits: two breeding efficiencies on original scale were estimated using Wilcox and Tomar functions (BEW and BET, respectively), and two breeding efficiencies transformed (ASBEW and ASBET, respectively), using the function [arcsine (square root (BEi/100))]. Estimates of heritability for measures of LPL and LP were low and ranged from 0.04 to 0.05. Estimates of heritability for breeding efficiencies on original and transformed scales oscillated from 0.18 to 0.32. Estimates of genetic correlations ranged from -0.57 to 0.79 for LPL and other traits and from 0.28 to 0.63 for LP and other traits.
Resumo:
With the aim of estimating the coefficient of heritability of average annual productivity of Nellore cows (COWPROD), a data set from 24,855 animals with known pedigree was analyzed. COWPROD is defined as the amount (in kilograms) of weaned calves produced yearly by one cow during her remaining time in herd ignoring a fixed period of 365 days. COWPROD was calculated regarding three standards: a) based on the post-weaning weight from the calves ignoring any kind of adjustment (COWPROD_NAJ), b) adjusted weight for the fixed effects (COWPROD_AJFIX) and c) adjusted weight for the fixed effects and for the genetic merit of the sire (COWPROD_AJFIN). The obtained heritabilities were 0.15, 0.15 and 0.16 for COWPROD_NAJ, COWPROD_AJFIX and COWPROD_AJFIN, respectively. A complete set composed of 105,158 COWPROD records on 130,740 animals in pedigree was also analyzed for predicting the genetic merit of all animals in the data set and for the calculation of the genetic, phenotypic and residual trends. Ranking correlation was high for the adjusted and non-adjusted data, yet, for some of the animals, the difference among the genetic values was large. This would be an indication that it would be better to work always with the adjusted weaning weights. The genetic trend was positive, but was of small magnitude (0.26% of the trait average) and the residual trend was negative as a consequence of the large intensification of the production system, which has been occurring in the last years in the farms studied. The phenotypic trend was also negative and intermediate between the genetic and the residual ones.
Resumo:
Survival or longevity is an economically important trait in beef cattle. The main inconvenience for its inclusion in selection criteria is delayed recording of phenotypic data and the high computational demand for including survival in proportional hazard models. Thus, identification of a longevity-correlated trait that could be recorded early in life would be very useful for selection purposes. We estimated the genetic relationship of survival with productive and reproductive traits in Nellore cattle, including weaning weight (WW), post-weaning growth (PWG), muscularity (MUSC), scrotal circumference at 18 months (SC18), and heifer pregnancy (HP). Survival was measured in discrete time intervals and modeled through a sequential threshold model. Five independent bivariate Bayesian analyses were performed, accounting for cow survival and the five productive and reproductive traits. Posterior mean estimates for heritability (standard deviation in parentheses) were 0.55 (0.01) for WW, 0.25 (0.01) for PWG, 0.23 (0.01) for MUSC, and 0.48 (0.01) for SC18. The posterior mean estimates (95% confidence interval in parentheses) for the genetic correlation with survival were 0.16 (0.13-0.19), 0.30 (0.25-0.34), 0.31 (0.25-0.36), 0.07 (0.02-0.12), and 0.82 (0.78-0.86) for WW, PWG, MUSC, SC18, and HP, respectively. Based on the high genetic correlation and heritability (0.54) posterior mean estimates for HP, the expected progeny difference for HP can be used to select bulls for longevity, as well as for post-weaning gain and muscle score.
Resumo:
Genetic parameters for traits related to postweaning growth in Braunvieh cattle, reared under tropical and sub-tropical conditions in Brazil, were studied. Weight traits were weight at 365 days of age (W365, N = 4055), at 450 days (W450, N = 3453), and at 550 days (W550, N = 1946), while weight gains were gain from weaning to 365 days of age (WGW365, N = 3060), from weaning to 450 days (WGW450, N = 2764), from weaning to 550 days (WGW550, N = 1531), from 365 to 550 days of age (WG365550, N = 1528), from 365 to 450 days (WG365450, N = 2401), and from 450 to 550 days (WG450550, N = 1563). A full animal model was used for estimating the variance components, using the MTDFREML software. The dataset contained 18,688 animals with phenotypic measures and 35,188 animals in the relationship matrix. Heritability estimates for postweaning weights decreased with age. For W365, W450 and W550, respectively, the direct heritability estimates were 0.29 +/- 0.061, 0.25 +/- 0.057, 0.16 +/- 0.060, maternal heritability was 0.20 +/- 0.035, 0.18 +/- 0.035, 0.13 +/- 0.052, and total heritability was 0.30, 0.35, 0.26. In this breed, maternal influence was found to be important up to 550 days of age. The greater genetic correlations between weights were observed for weights measured at shorter intervals. A large environmental effect was observed for weight gain between weaning and 550 days; this effect was greater for the gains between 365 and 550 days.
Resumo:
The effect of genetic and non-genetic factors for carcass, breast meat and leg weights, and yields of a commercial broiler line were investigated using the restricted maximum likelihood method, considering four different animal models, including or excluding maternal genetic effect with covariance between direct and maternal genetic effects, and maternal permanent environmental effect. The likelihood ratio test was used to determine the most adequate model for each trait. For carcass, breast, and leg weight, and for carcass and breast yield, maternal genetic and permanent environmental effects as well as the covariance between direct and maternal genetic effects were significant. The estimates of direct and maternal heritability were 0.17 and 0.04 for carcass weight, 0.26 and 0.06 for breast weight, 0.22 and 0.02 for leg weight, 0.32 and 0.02 for carcass yield, and 0.52 and 0.04 for breast yield, respectively. For leg yield, maternal permanent environmental effect was important, in addition to direct genetic effects. For that trait, direct heritability and maternal permanent environmental variance as a proportion of the phenotypic variance were 0.43 and 0.02, respectively. The results indicate that ignoring maternal effects in the models, even though they were of small magnitude (0.02 to 0.06), tended to overestimate direct genetic variance and heritability for all traits.
Resumo:
Background: Group I introns are found in the nuclear small subunit ribosomal RNA gene (SSU rDNA) of some species of the genus Porphyra (Bangiales, Rhodophyta). Size polymorphisms in group I introns has been interpreted as the result of the degeneration of homing endonuclease genes (HEG) inserted in peripheral loops of intron paired elements. In this study, intron size polymorphisms were characterized for different Porphyra spiralis var. amplifolia (PSA) populations on the Southern Brazilian coast, and were used to infer genetic relationships and genetic structure of these PSA populations, in addition to cox2-3 and rbcL-S regions. Introns of different sizes were tested qualitatively for in vitro self-splicing. Results: Five intron size polymorphisms within 17 haplotypes were obtained from 80 individuals representing eight localities along the distribution of PSA in the Eastern coast of South America. In order to infer genetic structure and genetic relationships of PSA, these polymorphisms and haplotypes were used as markers for pairwise Fst analyses, Mantel's test and median joining network. The five cox2-3 haplotypes and the unique rbcL-S haplotype were used as markers for summary statistics, neutrality tests Tajima's D and Fu's Fs and for median joining network analyses. An event of demographic expansion from a population with low effective number, followed by a pattern of isolation by distance was obtained for PSA populations with the three analyses. In vitro experiments have shown that introns of different lengths were able to self-splice from pre-RNA transcripts. Conclusion: The findings indicated that degenerated HEGs are reminiscent of the presence of a full-length and functional HEG, once fixed for PSA populations. The cline of HEG degeneration determined the pattern of isolation by distance. Analyses with the other markers indicated an event of demographic expansion from a population with low effective number. The different degrees of degeneration of the HEG do not refrain intron self-splicing. To our knowledge, this was the first study to address intraspecific evolutionary history of a nuclear group I intron; to use nuclear, mitochondrial and chloroplast DNA for population level analyses of Porphyra; and intron size polymorphism as a marker for population genetics.
Resumo:
Comparing the patterns of population differentiation among genetic markers with different modes of inheritance call provide insights into patterns of sex-biased dispersal and gene flow. The blue-and-yellow Macaw (Ara ararauna) is a Neotropical parrot with a broad geographic distribution ill South America. However, little is known about the natural history and current status Of remaining wild populations, including levels of genetic variability. The progressive decline and possible fragmentation of populations may endanger this species in the near future. We analyzed mitochondrial DNA (mtDNA) control-region sequences and six microsatellite 106 Of Blue-and-yellow Macaws sampled throughout their geographic range ill Brazil to describe population genetic Structure, to make inferences about historical demography and dispersal behavior, and to provide insight for conservation efforts. Analyses of population genetic structure based on mtDNA showed evidence of two major populations ill western and eastern Brazil that share a few low-frequency haplotypes. This phylogeographic pattern seems to have originated by the historical isolation of Blue-and-yellow Macaw populations similar to 374,000 years ago and has been maintained by restricted gene flow and female philopatry. By contrast, variation ill biparentally inherited microsatellites was not structured geographically, Male-biased dispersal and female philopatry best explain the different patterns observed in these two markers. Because females disperse less than males, the two regional populations with well-differentiated mtDNA haplogroups should be considered two different management units for conservation purposes. Received 4 November 2007 accepted 10 December 2008.
Genetic Variation among Major Human Geographic Groups Supports a Peculiar Evolutionary Trend in PAX9
Resumo:
A total of 172 persons from nine South Amerindian, three African and one Eskimo populations were studied in relation to the Paired box gene 9 (PAX9) exon 3 (138 base pairs) as well as its 5' and 3' flanking intronic segments (232 bp and 220 bp, respectively) and integrated with the information available for the same genetic region from individuals of different geographical origins. Nine mutations were scored in exon 3 and six in its flanking regions; four of them are new South American tribe-specific singletons. Exon3 nucleotide diversity is several orders of magnitude higher than its intronic regions. Additionally, a set of variants in the PAX9 and 101 other genes related with dentition can define at least some dental morphological differences between Sub-Saharan Africans and non-Africans, probably associated with adaptations after the modern human exodus from Africa. Exon 3 of PAX9 could be a good molecular example of how evolvability works.
Resumo:
As a contribution towards detecting the genetic effects of low doses of genotoxic physical agents, this paper deals with the consequences of low-dose X-rays in the Aspergillus nidulans genome. The irradiation doses studied were those commonly used in dental clinics (1-5 cGy). Even very low doses promoted increased mitotic crossing-over frequencies in diploid strains heterozygous for several genetic markers including the ones involved in DNA repair and recombination mechanisms. Genetic markers of several heterozygous strains were individu`ally analyzed disclosing that some markers were especially sensitive to the treatments. These markers should be chosen as bio-indicators in the homozygotization index assay to better detect the recombinogenic/carcinogenic genomic effects of low-dose X-rays.
Resumo:
We describe a new exact relation for large N(c) QCD for the long-distance behavior of baryon form factors in the chiral limit. This model-independent relation is used to test the consistency of the structure of several baryon models. All 4D semiclassical chiral soliton models satisfy the relation, as does the Pomarol-Wulzer holographic model of baryons as 5D Skyrmions. However, remarkably, we find that the holographic model treating baryons as instantons in the Sakai-Sugimoto model does not satisfy the relation.
Resumo:
A simultaneous optimization strategy based on a neuro-genetic approach is proposed for selection of laser induced breakdown spectroscopy operational conditions for the simultaneous determination of macronutrients (Ca, Mg and P), micro-nutrients (B, Cu, Fe, Mn and Zn), Al and Si in plant samples. A laser induced breakdown spectroscopy system equipped with a 10 Hz Q-switched Nd:YAG laser (12 ns, 532 nm, 140 mJ) and an Echelle spectrometer with intensified coupled-charge device was used. Integration time gate, delay time, amplification gain and number of pulses were optimized. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. In order to find a model that could correlate laser induced breakdown spectroscopy operational conditions with compromised high peak areas of all elements simultaneously, a Bayesian Regularized Artificial Neural Network approach was employed. Subsequently, a genetic algorithm was applied to find optimal conditions for the neural network model, in an approach called neuro-genetic, A single laser induced breakdown spectroscopy working condition that maximizes peak areas of all elements simultaneously, was obtained with the following optimized parameters: 9.0 mu s integration time gate, 1.1 mu s delay time, 225 (a.u.) amplification gain and 30 accumulated laser pulses. The proposed approach is a useful and a suitable tool for the optimization process of such a complex analytical problem. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Although the Clock Drawing Test (CDT) is the second most used test in the world for the screening of dementia, there is still debate over its sensitivity specificity, application and interpretation in dementia diagnosis. This study has three main aims: to evaluate the sensitivity and specificity of the CDT in a sample composed of older adults with Alzheimer`s disease (AD) and normal controls; to compare CDT accuracy to the that of the Mini-mental State Examination (MMSE) and the Cambridge Cognitive Examination (CAMCOG), and to test whether the association of the MMSE with the CDT leads to higher or comparable accuracy as that reported for the CAMCOG. Methods: Cross-sectional assessment was carried out for 121 AD and 99 elderly controls with heterogeneous educational levels from a geriatric outpatient clinic who completed the Cambridge Examination for Mental Disorder of the Elderly (CAMDEX). The CDT was evaluated according to the Shulman, Mendez and Sunderland scales. Results: The CDT showed high sensitivity and specificity. There were significant correlations between the CDT and the MMSE (0.700-0.730; p < 0.001) and between the CDT and the CAMCOG (0.753-0.779; p < 0.001). The combination of the CDT with the MMSE improved sensitivity and specificity (SE = 89.2-90%; SP = 71.7-79.8%). Subgroup analysis indicated that for elderly people with lower education, sensitivity and specificity were both adequate and high. Conclusions: The CDT is a robust screening test when compared with the MMSE or the CAMCOG, independent of the scale used for its interpretation. The combination with the MMSE improves its performance significantly, becoming equivalent to the CAMCOG.
Resumo:
Stingless bees play an important ecological role as pollinators of many wild plant species in the tropics and have significant potential for the pollination of agricultural crops. Nevertheless, conservation efforts as well as commercial breeding programmes require better guidelines on the amount of genetic variation that is needed to maintain viable populations. In this context, we carried out a long-term genetic study on the stingless bee Melipona scutellaris to evaluate the population viability consequences of prolonged breeding from a small number of founder colonies. In particular, it was artificially imposed a genetic bottleneck by setting up a population starting from only two founder colonies, and continued breeding from it for a period of over 10 years in a location outside its natural area of occurrence. We show that despite a great reduction in the number of alleles present at both neutral microsatellite loci and the sex-determining locus relative to its natural source population, and an increased frequency in the production of sterile diploid males, the genetically impoverished population could be successfully bred and maintained for at least 10 years. This shows that in stingless bees, breeding from a small stock of colonies may have less severe consequences than previously suspected. In addition, we provide a simulation model to determine the number of colonies that are needed to maintain a certain number of sex alleles in a population, thereby providing useful guidelines for stingless bee breeding and conservation efforts.
Resumo:
The Brazilian Atlantic Forest is one of the richest biodiversity hotspots of the world. Paleoclimatic models have predicted two large stability regions in its northern and central parts, whereas southern regions might have suffered strong instability during Pleistocene glaciations. Molecular phylogeographic and endemism studies show, nevertheless, contradictory results: although some results validate these predictions, other data suggest that paleoclimatic models fail to predict stable rainforest areas in the south. Most studies, however, have surveyed species with relatively high dispersal rates whereas taxa with lower dispersion capabilities should be better predictors of habitat stability. Here, we have used two land planarian species as model organisms to analyse the patterns and levels of nucleotide diversity on a locality within the Southern Atlantic Forest. We find that both species harbour high levels of genetic variability without exhibiting the molecular footprint of recent colonization or population expansions, suggesting a long-term stability scenario. The results reflect, therefore, that paleoclimatic models may fail to detect refugia in the Southern Atlantic Forest, and that model organisms with low dispersal capability can improve the resolution of these models.
Resumo:
Bueno CR Jr, Ferreira JC, Pereira MG, Bacurau AV, Brum PC. Aerobic exercise training improves skeletal muscle function and Ca(2+) handling-related protein expression in sympathetic hyperactivity-induced heart failure. J Appl Physiol 109: 702-709, 2010. First published July 1, 2010; doi: 10.1152/japplphysiol.00281.2010.-The cellular mechanisms of positive effects associated with aerobic exercise training on overall intrinsic skeletal muscle changes in heart failure (HF) remain unclear. We investigated potential Ca(2+) abnormalities in skeletal muscles comprising different fiber compositions and investigated whether aerobic exercise training would improve muscle function in a genetic model of sympathetic hyperactivity-induced HF. A cohort of male 5-mo-old wild-type (WT) and congenic alpha(2A)/alpha(2C) adrenoceptor knockout (ARKO) mice in a C57BL/6J genetic background were randomly assigned into untrained and trained groups. Exercise training consisted of a 8-wk running session of 60 min, 5 days/wk (from 5 to 7 mo of age). After completion of the exercise training protocol, exercise tolerance was determined by graded treadmill exercise test, muscle function test by Rotarod, ambulation and resistance to inclination tests, cardiac function by echocardiography, and Ca(2+) handling-related protein expression by Western blot. alpha(2A)/alpha(2C)ARKO mice displayed decreased ventricular function, exercise intolerance, and muscle weakness paralleled by decreased expression of sarcoplasmic Ca(2+) release-related proteins [alpha(1)-, alpha(2)-, and beta(1)-subunits of dihydropyridine receptor (DHPR) and ryanodine receptor (RyR)] and Ca(2+) reuptake-related proteins [sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) 1/2 and Na(+)/Ca(2+) exchanger (NCX)] in soleus and plantaris. Aerobic exercise training significantly improved exercise tolerance and muscle function and reestablished the expression of proteins involved in sarcoplasmic Ca(2+) handling toward WT levels. We provide evidence that Ca(2+) handling-related protein expression is decreased in this HF model and that exercise training improves skeletal muscle function associated with changes in the net balance of skeletal muscle Ca(2+) handling proteins.