63 resultados para Galileo whole body vibration exercise


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soci UPR, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, Irigoyen MC, Phillips MI, Oliveira EM. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics 43: 665-673, 2011. First published March 29, 2011; doi:10.1152/physiolgenomics.00145.2010.-MiRNAs regulate cardiac development, hypertrophy, and angiogenesis, but their role in cardiac hypertrophy (CH) induced by aerobic training has not previously been studied. Aerobic training promotes physiological CH preserving cardiac function. This study assessed involvement of miRNAs-29 in CH of trained rats. Female Wistar rats (n = 7/group) were randomized into three groups: sedentary (S), training 1 (T1), training 2 (T2). T1: swimming sessions of 60 min/5 days/wk/10 wk. T2: similar to T1 until 8th wk. On the 9th wk rats swam 2x/day, and on the 10th wk 3x/day. MiRNAs analysis was performed by miRNA microarray and confirmed by real-time PCR. We assessed: markers of training, CH by ratio of left ventricle (LV) weight/body wt and cardiomyocytes diameter, pathological markers of CH (ANF, skeletal alpha-actin, alpha/beta-MHC), collagen I and III (COLIAI and COLIIIAI) by real-time PCR, protein collagen by hydroxyproline (OH-proline) concentration, CF and CH by echocardiography. Training improved aerobic capacity and induced CH. MiRNAs-1, 133a, and 133b were downregulated as observed in pathological CH, however, without pathological markers. MiRNA-29c expression increased in T1 (52%) and T2 (123%), correlated with a decrease in COLIAI and COLIIIAI expression in T1 (27%, 38%) and T2 (33%, 48%), respectively. MiRNA-29c was inversely correlated to OH-proline concentration (r = 0.61, P = 0.05). The E/A ratio increased in T2, indicating improved LV compliance. Thus, these results show that aerobic training increase miR-29 expression and decreased collagen gene expression and concentration in the heart, which is relevant to the improved LV compliance and beneficial cardiac effects, associated with aerobic high performance training.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-kappa B activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, I kappa B and NF-kappa B) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2 alpha phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of wake-induced vibrations (WIV) of a pair of cylinders in a tandem arrangement is investigated by experiments. A typical WIV response is characterized by a build-up of amplitude persisting to high reduced velocities; this is different from a typical vortex-induced vibration (VIV) response, which occurs in a limited resonance range. We suggest that WIV of the downstream cylinder is excited by the unsteady vortex-structure interactions between the body and the upstream wake. Coherent vortices interfering with the downstream cylinder induce fluctuations in the fluid force that are not synchronized with the motion. A favourable phase lag between the displacement and the fluid force guarantees that a positive energy transfer from the flow to the structure sustains the oscillations. If the unsteady vortices are removed from the wake of the upstream body then WIV will not be excited. An experiment performed in a steady shear flow turned out to be central to the understanding of the origin of the fluid forces acting on the downstream cylinder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of varying the geometric parameters of helical strakes on vortex-induced vibration (VIV) is investigated in this paper. The degree of oscillation attenuation or even suppression is analysed for isolated circular cylinder cases. How a cylinder fitted with strakes behaves when immersed in the wake of another cylinder in tandem arrangement is also investigated and these results are compared to those with a single straked cylinder. The experimental tests are conducted at a circulating water channel facility and the cylindrical models are mounted on a low-damping air bearing elastic base with one degree-of-freedom, restricted to oscillate in the transverse direction to the channel flow. Three strake pitches (p) and heights (h) are tested: p = 5, 10, 15d, and h = 0.1, 0.2, 0.25d. The mass ratio is 1.8 for all models. The Reynolds number range is from 1000 to 10000, and the reduced velocity varies up to 21. The cases with h = 0.1d strakes reduce the amplitude response when compared to the isolated plain cylinder, however the oscillation still persists. On the other hand, the cases with h = 0.2, 0.25d strakes almost completely suppress VIV. Spanwise vorticity fields, obtained through stereoscopic digital particle image velocimetry (SDPIV), show an alternating vortex wake for the p = 10d and h = 0.1d straked cylinder. The p = 10d and h = 0.2d cylinder wake has separated shear layers with constant width and no roll-up close to the body. The strakes do not increase the magnitude of the out-of-plane velocity compared to the isolated plain cylinder. However, they deflect the flow in the out-of-plane direction in a controlled way, which can prevent the vortex shedding correlation along the span. In order to investigate the wake interference effect on the strake efficiency, an experimental arrangement with two cylinders in tandem is employed. The centre-to-centre distance for the tandem arrangement varies from 2 to 6. When the downstream p = 10d and h = 0.2d cylinder is immersed in the wake of an upstream fixed plain cylinder, it loses its effectiveness compared with the isolated case. Although the oscillations have significant amplitude, they are limited, which is a different behaviour from that of a tandem configuration with two plain cylinders. For this particular case, the amplitude response monotonically increases for all gaps, except one, a trait usually found in galloping-like oscillations. SDPIV results for the tandem arrangements show alternating vortex shedding and oscillatory wake. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents new experimental results of Vortex-Induced Vibration (VIV) on inclined cylinders. Models are mounted on a low damping air-bearing elastic base with one degree-of-freedom, constrained to oscillate only in the transverse direction to a free stream. The Reynolds number varied in the range 2000 less than or similar to Re less than or similar to 8000. New measurements on the dynamic response oscillations of inclined cylinders, due to VIV, are compared with previous experiments of a vertical cylinder. Models with circular and elliptical cross sections have been tested. The purpose of this work is to check the validity of the normal velocity correction of VIV studies of inclined structures. The results show that the reduced velocity range, in which the upper and lower branches of VIV occurs, is similar to the vertical cylinder case if the proper projected velocity is considered. Tests have been conducted to support this observation with inclinations up to 45 degrees. We have also observed that the amplitudes of oscillation of the inclined circular cylinder are comparable, but slightly lower than, to the amplitudes observed in the vertical cylinder experiments. Measured forces and added mass also show similar behaviour. However, for cases with an elliptical cylinder, the amplitudes of oscillation are considerably lower than those observed for a circular cylinder. This difference is explained by the higher added mass of the elliptical cylinder. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diminished balance ability poses a serious health risk due to the increased likelihood of falling, and impaired postural stability is significantly associated with blindness and poor vision. Noise stimulation (by improving the detection of sub-threshold somatosensory information) and tactile supplementation (i.e. additional haptic information provided by an external contact surface) have been shown to improve the performance of the postural control system. Moreover, vibratory noise added to the source of tactile supplementation (e.g. applied to a surface that the fingertip touches) has been shown to enhance balance stability more effectively than tactile supplementation alone. In view of the above findings, in addition to the well established consensus that blind subjects show superior abilities in the use of tactile information, we hypothesized that blind subjects may take extra benefits from the vibratory noise added to the tactile supplementation and hence show greater improvements in postural stability than those observed for sighted subjects. If confirmed, this hypothesis may lay the foundation for the development of noise-based assistive devices (e.g. canes, walking sticks) for improving somatosensation and hence prevent falls in blind individuals. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The koinobiont Cotesia flavipes responds to and is influenced by biochemical changes in the host hemolymph composition, Diatraea saccharalis. Changes in the composition of macronutrients may occur due to the hosts own development or by changes induced after parasitization. These changes occur to facilitate parasitoid invasion and to make the host internal environment suitable to parasitoid immature development. Therefore, changes in the availability of stored and circulating nutrients may correlate with the nutritional requirements of specific parasitoid immature stages. In here, we describe changes in the biochemical composition of parasitized and control larvae at different stages of parasitoid development to gain information on C flavipes host regulation and on its quantitative immature nutritional requirements. Total proteins, lipids and carbohydrates free in the hemolymph or stored in host fat bodies, and the SDS-PAGE protein profile of the hemolymph were evaluated in control and parasitized 6th instar during the whole parasitoid development. Changes in the total protein available in the host hemolymph were detected soon after parasitization, but carbohydrate and lipids were observed to differ only towards parasitoid larvae egression. Although C. flavipes affected the availability of all macronutrients observed in the host hemolymph, lipids and proteins stored in the host fat bodies were unaffected. However, carbohydrate concentration at the end of parasitoid larval development was much lower in parasitized than in control larvae at the same stage of development. SDS-PAGE analysis indicated C flavipes up-regulated two host proteins (125 and 48 kDa) and released two parasitism-specific proteins towards the end of parasitoid larval development. We provide a discussion on the role these changes may have on the process of host regulation and their possible requirement to sustain parasitoid development. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Idiopathic inflammatory myopathies (IIM) are a heterogeneous group of diseases that share some symptoms such as muscular weakness and inflammation of skeletal muscle. Complete recovery of muscle function with pharmacological treatment does not always occur, suggesting that physical inability is a great concern for these patients. In this context, it has been speculated that physical exercise could result in functional benefits to patients with IIM, leading to an improvement in quality of life. In fact, recent studies of polymyositis (PM) and dermatomyositis (DM) support the notion that exercise training improves or at least stabilizes muscle strength and functional ability without inducing disease flares. Importantly, these benefits were observed not only during the chronic phase, but also in the course of active disease. This positive effect was found to be long term, as demonstrated by a six-month significant improvement in exercise capacity and strength. Together, these findings indicate that a well controlled exercise program can be recommended for patients with DM and PM. The optimal exercise modality training and the underlying mechanism for this encouraging response remain to be determined in future studies. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a ""boost"" to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluated at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels., compared with 3D-CRT. Intensity-modulated radiotherapy provided of 20, 30, and 40 Gy, respectively statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment. (C) 2010 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regarding all benefits of exercise training, a question remains: how long are these benefits kept? This study evaluated the effect of 3-week detraining after 10 weeks of training in STZ-diabetic rats. Male Wistar rats were assigned into: sedentary controls, trained controls, trained-detrained controls. sedentary diabetic, trained diabetic and trained-detrained diabetic. Arterial pressure (AP) and heart rate (HR) were recorded by a data acquisition system. Baroreflex sensitivity (BRS) was evaluated by HR responses to AP changes induced by infusion of vasoactive drugs. Intrinsic heart rate (IHR), sympathetic tonus (ST) and vagal tonus (VT) were evaluated by pharmacological blockade with atenolol and atropine. Spectral analysis of systolic AP and HR variabilities (HRV) was performed to estimate autonomic modulation to the heart and vessels. Diabetes cardiovascular and autonomic dysfunctions were reversed by exercise training and partially maintained in the 3-week detraining period. In controls, training decreased AP and HR and improved BRS. changes that returned to baseline values after detraining. IHR and VT were improved in trained diabetic rats and remained in detrained diabetic ones. LF component of HRV decreased in trained control group. In diabetics. exercise training improved variance, and absolute LF and HF components of HRV. Only HF was maintained in detrained diabetic group. Moreover, there was an inverse relationship between plasma glucose and the absolute HF component of HRV. These changes probably determined the different survival rate of 80% in diabetic detrained and 51% in diabetic sedentary rats. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Although obesity is usually observed in peripheral arterial disease (PAD) patients, the effects of the association between these diseases on walking capacity are not well documented. Objective: The main objectives of this study were to determine the effects of obesity on exercise tolerance and post-exercise hemodynamic recovery in elderly PAD patients. Methods: 46 patients with stable symptoms of intermittent claudication were classified according to their body mass index (BMI) into normal group (NOR) = BMI < 28.0 and obese or in risk of obesity group (OBE) = BMI >= 28.0. All patients performed a progressive graded treadmill test. During exercise, ventilatory responses were evaluated and pre- and post-exercise ankle and arm blood pressures were measured. Results: Exercise tolerance and oxygen consumption at total walking time were similar between OBE and NOR. However, OBE showed a lower claudication time (309 +/- 151 vs. 459 +/- 272 s, p = 0.02) with a similar oxygen consumption at this time. In addition, OBE presented a longer time for ankle brachial index recovery after exercise (7.8 +/- 2.8 vs. 6.3 +/- 2.6 min, p = 0.02). Conclusion: Obesity in elderly PAD patients decreased time to claudication, and delayed post-exercise hemodynamic recovery. These results suggest that muscle metabolic demand, and not total workload, is responsible for the start of the claudication and maximal exercise tolerance in PAD patients. Moreover, claudication duration might be responsible for the time needed to a complete hemodynamic recovery after exercise. Copyright (c) 2008 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Spontaneously hypertensive rats (SHRs) show increased cardiac sympathetic activity, which could stimulate cardiomyocyte hypertrophy, cardiac damage, and apoptosis. Norepinephrine (NE)induced cardiac oxidative stress seems to be involved in SHR cardiac hypertrophy development. Because exercise training (ET) decreases sympathetic activation and oxidative stress, it may alter cardiac hypertrophy in SHR. The aim of this study was to determine, in vivo, whether ET alters cardiac sympathetic modulation on cardiovascular system and whether a correlation exists between cardiac oxidative stress and hypertrophy. METHODS Male SHRs (15-weeks old) were divided into sedentary hypertensive (SHR, n = 7) and exercise-trained hypertensive rats (SHR-T, n = 7). Moderate ET was performed on a treadmill (5 days/week, 60 min, 10 weeks). After ET, cardiopulmonary reflex responses were assessed by bolus injections of 5-HT. Autoregressive spectral estimation was performed for systolic arterial pressure (SAP) with oscillatory components quantified as low (LF: 0.2-0.75 Hz) and high (HF:0.75-4.0 Hz) frequency ranges. Cardiac NE concentration, lipid peroxidation, antioxidant enzymes activities, and total nitrates/nitrites were determined. RESULTS ET reduced mean arterial pressure, SAP variability (SAP var), LIF of SAP, and cardiac hypertrophy and increased cardiopulmonary reflex responses. Cardiac lipid peroxidation was decreased in trained SHRs and positively correlated with NE concentrations (r= 0.89, P < 0.01) and heart weight/body weight ratio (r= 0.72, P < 0.01), and inversely correlated with total nitrates/nitrites (r= -0.79, P < 0.01). Moreover, in trained SHR, cardiac total nitrates/nitrites were inversely correlated with NE concentrations (r= -0.82, P < 0.01). CONCLUSIONS ET attenuates cardiac sympathetic modulation and cardiac hypertrophy, which were associated with reduced oxidative stress and increased nitric oxide (NO) bioavailability. Am J Hypertens 2008;21:1138-1193 (C) 2008 American Journal of Hypertension, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Sustained beta-adrenoreceptor activation promotes cardiac hypertrophy and cellular injury. Aims: To evaluate the cardioprotective effect of exercise on damage induced by beta-adrenergic hyperactivity. Methods: Male Wistar rats were randomised into four groups (n=8 per group): sedentary non-treated control (C), sedentary treated with isoproterenol 0.3 mg/kg/day administered subcutaneously for 8 days (1), exercised non-treated (E) and exercised plus isoproterenol administered during the last eight days of exercise (IE). Exercised animals ran on a treadmill for 1 h daily 6 times a week for 13 weeks. Results: Isoproterenol caused increases in left ventricle (LV) wet and dry weight/body weight ratio, LV water content and cardiomyocyte transverse diameter. Additionally, isoproterenol induced severe cellular lesions, necrosis, and apoptosis, increased collagen content and reduced capillary and fibre fractional areas. Notably, all of these abnormalities were completely prevented by exercise. Conclusion: Our data have demonstrated that complete cardioprotection is possible through exercise training; by preventing p-adrenergic hyperactivity-induced cardiac hypertrophy and structural injury. (c) 2008 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: In this study we analyzed the role played by aerobic exercise training in the plasma lipoprotein profile, prebeta 1-HDL concentration, and in the in vitro HDL3 ability to remove cholesterol from macrophages and inhibit LDL oxidation in type 2 diabetes mellitus (DM) patients and control subjects, in the fasting and postprandial states. Methods: Healthy controls (HTC, N = 11; 1 M/10 F) and subjects with type 2 diabetes mellitus (DMT, N = 11; 3M/ 8F) were engaged in a 4-month aerobic training program, and compared with a group of sedentary subjects with type 2 diabetes mellitus (DMS, N = 10; 4 M/6 F). All groups were submitted to an oral fat load test to analyze all parameters, both at the beginning of the investigation protocol (basal) and at the end of the study period (final). Results: Exercising did not modify body weight, BMI, plasma concentrations of total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides (TG), glucose, insulin, or HOMA-IR, but it reduced the waist circumference. The HDL3 Composition did not change, and its ability to remove cell cholesterol was unaltered by aerobic training. In DMT but not in HTC, aerobic training improved 15% the HDL3 protective effect against LDL maximal oxidation rate in the fasting state, and reduced 24% the plasma prebeta 1-HDL concentration in the postprandial state, suggesting an enhanced prebeta 1-HDL conversion into larger, more mature HDL particles. In this regard, regular aerobic exercise enriched HDL2 with TG in the fasting and postprandial states in HTC and in the fasting phase in DMT. Conclusion: Our results show that aerobic exercise training in diabetes mellitus improves the HDL efficiency against LDL oxidation and favors HDL maturation. These findings were independent of changes in insulin resistance and of the rise of plasma HDL cholesterol concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolic syndrome (MetS) denotes a clustering of risk factors that may affect nitric oxide (NO) bioavailability and predispose to cardiovascular diseases, which are delayed by exercise training. However, no previous study has examined how MetS affects markers of NO formation, and whether exercise training increases NO formation in MetS patients. Here, we tested these two hypotheses. We studied 48 sedentary individuals: 20 healthy controls and 28 MetS patients. Eighteen MetS patients were subjected to a 3-month exercise training (E+group), while the remaining 10 MetS patients remained sedentary (E-group). The plasma concentrations of nitrite, cGMP, and ADMA (asymmetrical dimethylarginine: an endogenous nitric oxide synthase inhibitor), and the whole blood nitrite concentrations were determined at baseline and after exercise training using an ozone-based chemiluminescence assay, and commercial enzyme immunoassays. Thiobarbituric acid reactive species (TBA-RS) were measured in the plasma to assess oxidative stress using a fluorometric method. We found that, compared with healthy subjects, patients with MetS have lower concentrations of markers of NO formation, including whole blood nitrite, plasma nitrite, and plasma cGMP, and increased oxidative stress (all P < 0.05). Exercise training increased the concentrations of whole blood nitrite and cGMP, and decreased both oxidative stress and the circulating concentrations of ADMA (both P < 0.05). These findings show clinical evidence for lower endogenous NO formation in patients with MetS, and for improvements in NO formation associated with exercise training in MetS patients. (C) 2008 Elsevier Inc. All rights reserved.