98 resultados para GALAXIES: STARBURST


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Two main scenarios for the formation of the Galactic bulge are invoked, the first one through gravitational collapse or hierarchical merging of subclumps, the second through secular evolution of the Galactic disc. Aims. We aim to constrain the formation of the Galactic bulge through studies of the correlation between kinematics and metallicities in Baade's Window (l = 1 degrees, b = -4 degrees) and two other fields along the bulge minor axis (l = 0 degrees, b = -6 degrees and b = -12 degrees). Methods. We combine the radial velocity and the [Fe/H] measurements obtained with FLAMES/GIRAFFE at the VLT with a spectral resolution of R = 20 000, plus for the Baade's Window field the OGLE-II proper motions, and compare these with published N-body simulations of the Galactic bulge. Results. We confirm the presence of two distinct populations in Baade's Window found in Hill et al. (2010, A&A, submitted): the metal-rich population presents bar-like kinematics while the metal-poor population shows kinematics corresponding to an old spheroid or a thick disc. In this context the metallicity gradient along the bulge minor axis observed by Zoccali et al. (2008, A&A, 486, 177), visible also in the kinematics, can be related to a varying mix of these two populations as one moves away from the Galactic plane, alleviating the apparent contradiction between the kinematic evidence of a bar and the existence of a metallicity gradient. Conclusions. We show evidence that the two main scenarios for the bulge formation co-exist within the Milky Way bulge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the properties of homogeneous and isotropic flat cosmologies in which the present accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM) particles (Omega(m) = 1). For some matter creation rates proposed in the literature, we show that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth factor, and the cluster formation rate are analytically defined. The best CCDM scenario has only one free parameter and our joint analysis involving baryonic acoustic oscillations + cosmic microwave background (CMB) + SNe Ia data yields (Omega) over tilde = 0.28 +/- 0.01 (1 sigma), where (Omega) over tilde (m) is the observed matter density parameter. In particular, this implies that the model has no dark energy but the part of the matter that is effectively clustering is in good agreement with the latest determinations from the large- scale structure. The growth of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to the usual Lambda CDM cosmology. Such results point to the possibility of a crucial observational test confronting CCDM with Lambda CDM scenarios through a more detailed analysis involving CMB, weak lensing, as well as the large-scale structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A smooth inflaton potential is generally assumed when calculating the primordial power spectrum, implicitly assuming that a very small oscillation in the inflaton potential creates a negligible change in the predicted halo mass function. We show that this is not true. We find that a small oscillating perturbation in the inflaton potential in the slow-roll regime can alter significantly the predicted number of small halos. A class of models derived from supergravity theories gives rise to inflaton potentials with a large number of steps and many trans-Planckian effects may generate oscillations in the primordial power spectrum. The potentials we study are the simple quadratic (chaotic inflation) potential with superimposed small oscillations for small field values. Without leaving the slow-roll regime, we find that for a wide choice of parameters, the predicted number of halos change appreciably. For the oscillations beginning in the 10(7)-10(8) M(circle dot) range, for example, we find that only a 5% change in the amplitude of the chaotic potential causes a 50% suppression of the number of halos for masses between 10(7)-10(8) M(circle dot) and an increase in the number of halos for masses <10(6) M(circle dot) by factors similar to 15-50. We suggest that this might be a solution to the problem of the lack of observed dwarf galaxies in the range 10(7)-10(8) M(circle dot). This might also be a solution to the reionization problem where a very large number of Population III stars in low mass halos are required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. It was proposed earlier that the relativistic ejections observed in microquasars could be produced by violent magnetic reconnection episodes at the inner disk coronal region (de Gouveia Dal Pino & Lazarian 2005). Aims. Here we revisit this model, which employs a standard accretion disk description and fast magnetic reconnection theory, and discuss the role of magnetic reconnection and associated heating and particle acceleration in different jet/disk accretion systems, namely young stellar objects (YSOs), microquasars, and active galactic nuclei (AGNs). Methods. In microquasars and AGNs, violent reconnection episodes between the magnetic field lines of the inner disk region and those that are anchored in the black hole are able to heat the coronal/disk gas and accelerate the plasma to relativistic velocities through a diffusive first-order Fermi-like process within the reconnection site that will produce intermittent relativistic ejections or plasmons. Results. The resulting power-law electron distribution is compatible with the synchrotron radio spectrum observed during the outbursts of these sources. A diagram of the magnetic energy rate released by violent reconnection as a function of the black hole (BH) mass spanning 10(9) orders of magnitude shows that the magnetic reconnection power is more than sufficient to explain the observed radio luminosities of the outbursts from microquasars to low luminous AGNs. In addition, the magnetic reconnection events cause the heating of the coronal gas, which can be conducted back to the disk to enhance its thermal soft X-ray emission as observed during outbursts in microquasars. The decay of the hard X-ray emission right after a radio flare could also be explained in this model due to the escape of relativistic electrons with the evolving jet outburst. In the case of YSOs a similar magnetic configuration can be reached that could possibly produce observed X-ray flares in some sources and provide the heating at the jet launching base, but only if violent magnetic reconnection events occur with episodic, very short-duration accretion rates which are similar to 100-1000 times larger than the typical average accretion rates expected for more evolved (T Tauri) YSOs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Perseus galaxy cluster is known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths; both morphologies suggest that the active galactic nucleus (AGN) jet is subject to precession. In this work, we performed three-dimensional hydrodynamical simulations of the interaction between a precessing AGN jet and the warm intracluster medium plasma, whose dynamics are coupled to a Navarro-Frenk-White dark matter gravitational potential. The AGN jet inflates cavities that become buoyantly unstable and rise up out of the cluster core. We found that under certain circumstances precession can originate multiple pairs of bubbles. For the physical conditions in the Perseus cluster, multiple pairs of bubbles are obtained for a jet precession opening angle >40 degrees acting for at least three precession periods, reproducing both radio and X-ray maps well. Based on such conditions, assuming that the Bardeen-Peterson effect is dominant, we studied the evolution of the precession opening angle of this system. We were able to constrain the ratio between the accretion disk and the black hole angular momenta as 0.7-1.4. We were also able to constrain the present precession angle to 30 degrees-40 degrees, as well as the approximate age of the inflated bubbles to 100-150 Myr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new insight on NGC 6034 and UGC 842, two groups of galaxies previously reported in the literature as being fossil groups. The study is based on optical photometry and spectroscopy obtained with the CTIO Blanco telescope and Sloan Digital Sky Survey archival data. We find that NGC 6034 is embedded in a large structure, dominated by three rich clusters and other small groups. Its first and next four ranked galaxies have magnitude differences in the r band and projected distances which violate the optical criteria to classify it as a fossil group. We confirm that the UGC 842 group is a fossil group, but with about half the velocity dispersion that is reported in previous works. The velocity distribution of its galaxies reveals the existence of two structures in its line of sight, one with sigma(nu) similar to 223 km s(-1) and another with sigma(nu) similar to 235 km s(-1), with a difference in velocity of similar to 820 km s(-1). The main structure is dominated by passive galaxies, while these represent similar to 60% of the second structure. The X-ray temperature for the intragroup medium of a group with such a velocity dispersion is expected to be kT similar to 0.5-1 keV, against the observed value of kT similar to 1.9 keV reported in the literature. This result makes UGC 842 a special case among fossil groups because (1) it represents more likely the interaction between two small groups, which warms the intragroup medium and/or (2) it could constitute evidence that member galaxies lost energy in the process of spiraling toward the group center, and decreased the velocity dispersion of the system. As far as we know, UGC 842 is the first low-mass fossil group studied in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. The cosmic time around the z similar to 1 redshift range appears crucial in the cluster and galaxy evolution, since it is probably the epoch of the first mature galaxy clusters. Our knowledge of the properties of the galaxy populations in these clusters is limited because only a handful of z similar to 1 clusters are presently known. Aims. In this framework, we report the discovery of a z similar to 0.87 cluster and study its properties at various wavelengths. Methods. We gathered X-ray and optical data (imaging and spectroscopy), and near and far infrared data (imaging) in order to confirm the cluster nature of our candidate, to determine its dynamical state, and to give insight on its galaxy population evolution. Results. Our candidate structure appears to be a massive z similar to 0.87 dynamically young cluster with an atypically high X-ray temperature as compared to its X-ray luminosity. It exhibits a significant percentage (similar to 90%) of galaxies that are also detected in the 24 mu m band. Conclusions. The cluster RXJ1257.2+4738 appears to be still in the process of collapsing. Its relatively high temperature is probably the consequence of significant energy input into the intracluster medium besides the regular gravitational infall contribution. A significant part of its galaxies are red objects that are probably dusty with on-going star formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ca II triplet (CaT) feature in the near-infrared has been employed as a metallicity indicator for individual stars as well as integrated light of Galactic globular clusters (GCs) and galaxies with varying degrees of success, and sometimes puzzling results. Using the DEIMOS multi-object spectrograph on Keck we obtain a sample of 144 integrated light spectra of GCs around the brightest group galaxy NGC 1407 to test whether the CaT index can be used as ametallicity indicator for extragalactic GCs. Different sets of single stellar population models make different predictions for the behavior of the CaT as a function of metallicity. In this work, the metallicities of the GCs around NGC 1407 are obtained from CaT index values using an empirical conversion. The measured CaT/metallicity distributions show unexpected features, the most remarkable being that the brightest red and blue GCs have similar CaT values despite their large difference in mean color. Suggested explanations for this behavior in the NGC 1407 GC system are (1) the CaT may be affected by a population of hot blue stars, (2) the CaT may saturate earlier than predicted by the models, and/or (3) color may not trace metallicity linearly. Until these possibilities are understood, the use of the CaT as a metallicity indicator for the integrated spectra of extragalactic GCs will remain problematic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. We study galaxy evolution and spatial patterns in the surroundings of a sample of 2dF groups. Aims. Our aim is to find evidence of galaxy evolution and clustering out to 10 times the virial radius of the groups and so redefine their properties according to the spatial patterns in the fields and relate them to galaxy evolution. Methods. Group members and interlopers were redefined after the identification of gaps in the redshift distribution. We then used exploratory spatial statistics based on the the second moment of the Ripley function to probe the anisotropy in the galaxy distribution around the groups. Results. We found an important anticorrelation between anisotropy around groups and the fraction of early-type galaxies in these fields. Our results illustrate how the dynamical state of galaxy groups can be ascertained by the systematic study of their neighborhoods. This is an important achievement, since the correct estimate of the extent to which galaxies are affected by the group environment and follow large-scale filamentary structure is relevant to understanding the process of galaxy clustering and evolution in the Universe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe and present initial results of a weak lensing survey of nearby (z less than or similar to 0.1) galaxy clusters in the Sloan Digital Sky Survey (SDSS). In this first study, galaxy clusters are selected from the SDSS spectroscopic galaxy cluster catalogs of Miller et al. and Berlind et al. We report a total of seven individual low-redshift cluster weak lensing measurements that include A2048, A1767, A2244, A1066, A2199, and two clusters specifically identified with the C4 algorithm. Our program of weak lensing of nearby galaxy clusters in the SDSS will eventually reach similar to 200 clusters, making it the largest weak lensing survey of individual galaxy clusters to date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The VISTA near infrared survey of the Magellanic System (VMC) will provide deep YJK(s) photometry reaching stars in the oldest turn-off point throughout the Magellanic Clouds (MCs). As part of the preparation for the survey, we aim to access the accuracy in the star formation history (SFH) that can be expected from VMC data, in particular for the Large Magellanic Cloud (LMC). To this aim, we first simulate VMC images containing not only the LMC stellar populations but also the foreground Milky Way (MW) stars and background galaxies. The simulations cover the whole range of density of LMC field stars. We then perform aperture photometry over these simulated images, access the expected levels of photometric errors and incompleteness, and apply the classical technique of SFH-recovery based on the reconstruction of colour-magnitude diagrams (CMD) via the minimisation of a chi-squared-like statistics. We verify that the foreground MW stars are accurately recovered by the minimisation algorithms, whereas the background galaxies can be largely eliminated from the CMD analysis due to their particular colours and morphologies. We then evaluate the expected errors in the recovered star formation rate as a function of stellar age, SFR(t), starting from models with a known age-metallicity relation (AMR). It turns out that, for a given sky area, the random errors for ages older than similar to 0.4 Gyr seem to be independent of the crowding. This can be explained by a counterbalancing effect between the loss of stars from a decrease in the completeness and the gain of stars from an increase in the stellar density. For a spatial resolution of similar to 0.1 deg(2), the random errors in SFR(t) will be below 20% for this wide range of ages. On the other hand, due to the lower stellar statistics for stars younger than similar to 0.4 Gyr, the outer LMC regions will require larger areas to achieve the same level of accuracy in the SFR( t). If we consider the AMR as unknown, the SFH-recovery algorithm is able to accurately recover the input AMR, at the price of an increase of random errors in the SFR(t) by a factor of about 2.5. Experiments of SFH-recovery performed for varying distance modulus and reddening indicate that these parameters can be determined with (relative) accuracies of Delta(m-M)(0) similar to 0.02 mag and Delta E(B-V) similar to 0.01 mag, for each individual field over the LMC. The propagation of these errors in the SFR(t) implies systematic errors below 30%. This level of accuracy in the SFR(t) can reveal significant imprints in the dynamical evolution of this unique and nearby stellar system, as well as possible signatures of the past interaction between the MCs and the MW.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the star/galaxy classification efficiency of 13 different decision tree algorithms applied to photometric objects in the Sloan Digital Sky Survey Data Release Seven (SDSS-DR7). Each algorithm is defined by a set of parameters which, when varied, produce different final classification trees. We extensively explore the parameter space of each algorithm, using the set of 884,126 SDSS objects with spectroscopic data as the training set. The efficiency of star-galaxy separation is measured using the completeness function. We find that the Functional Tree algorithm (FT) yields the best results as measured by the mean completeness in two magnitude intervals: 14 <= r <= 21 (85.2%) and r >= 19 (82.1%). We compare the performance of the tree generated with the optimal FT configuration to the classifications provided by the SDSS parametric classifier, 2DPHOT, and Ball et al. We find that our FT classifier is comparable to or better in completeness over the full magnitude range 15 <= r <= 21, with much lower contamination than all but the Ball et al. classifier. At the faintest magnitudes (r > 19), our classifier is the only one that maintains high completeness (> 80%) while simultaneously achieving low contamination (similar to 2.5%). We also examine the SDSS parametric classifier (psfMag - modelMag) to see if the dividing line between stars and galaxies can be adjusted to improve the classifier. We find that currently stars in close pairs are often misclassified as galaxies, and suggest a new cut to improve the classifier. Finally, we apply our FT classifier to separate stars from galaxies in the full set of 69,545,326 SDSS photometric objects in the magnitude range 14 <= r <= 21.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. Cluster properties can be more distinctly studied in pairs of clusters, where we expect the effects of interactions to be strong. Aims. We here discuss the properties of the double cluster Abell 1758 at a redshift z similar to 0.279. These clusters show strong evidence for merging. Methods. We analyse the optical properties of the North and South cluster of Abell 1758 based on deep imaging obtained with the Canada-France-Hawaii Telescope (CFHT) archive Megaprime/Megacam camera in the g' and r' bands, covering a total region of about 1.05 x 1.16 deg(2), or 16.1 x 17.6 Mpc(2). Our X-ray analysis is based on archive XMM-Newton images. Numerical simulations were performed using an N-body algorithm to treat the dark-matter component, a semi-analytical galaxy-formation model for the evolution of the galaxies and a grid-based hydrodynamic code with a parts per million (PPM) scheme for the dynamics of the intra-cluster medium. We computed galaxy luminosity functions (GLFs) and 2D temperature and metallicity maps of the X-ray gas, which we then compared to the results of our numerical simulations. Results. The GLFs of Abell 1758 North are well fit by Schechter functions in the g' and r' bands, but with a small excess of bright galaxies, particularly in the r' band; their faint-end slopes are similar in both bands. In contrast, the GLFs of Abell 1758 South are not well fit by Schechter functions: excesses of bright galaxies are seen in both bands; the faint-end of the GLF is not very well defined in g'. The GLF computed from our numerical simulations assuming a halo mass-luminosity relation agrees with those derived from the observations. From the X-ray analysis, the most striking features are structures in the metal distribution. We found two elongated regions of high metallicity in Abell 1758 North with two peaks towards the centre. In contrast, Abell 1758 South shows a deficit of metals in its central regions. Comparing observational results to those derived from numerical simulations, we could mimic the most prominent features present in the metallicity map and propose an explanation for the dynamical history of the cluster. We found in particular that in the metal-rich elongated regions of the North cluster, winds had been more efficient than ram-pressure stripping in transporting metal-enriched gas to the outskirts. Conclusions. We confirm the merging structure of the North and South clusters, both at optical and X-ray wavelengths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. A model-independent reconstruction of the cosmic expansion rate is essential to a robust analysis of cosmological observations. Our goal is to demonstrate that current data are able to provide reasonable constraints on the behavior of the Hubble parameter with redshift, independently of any cosmological model or underlying gravity theory. Methods. Using type Ia supernova data, we show that it is possible to analytically calculate the Fisher matrix components in a Hubble parameter analysis without assumptions about the energy content of the Universe. We used a principal component analysis to reconstruct the Hubble parameter as a linear combination of the Fisher matrix eigenvectors (principal components). To suppress the bias introduced by the high redshift behavior of the components, we considered the value of the Hubble parameter at high redshift as a free parameter. We first tested our procedure using a mock sample of type Ia supernova observations, we then applied it to the real data compiled by the Sloan Digital Sky Survey (SDSS) group. Results. In the mock sample analysis, we demonstrate that it is possible to drastically suppress the bias introduced by the high redshift behavior of the principal components. Applying our procedure to the real data, we show that it allows us to determine the behavior of the Hubble parameter with reasonable uncertainty, without introducing any ad-hoc parameterizations. Beyond that, our reconstruction agrees with completely independent measurements of the Hubble parameter obtained from red-envelope galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. The Abell 222 and 223 clusters are located at an average redshift z similar to 0.21 and are separated by 0.26 deg. Signatures of mergers have been previously found in these clusters, both in X-rays and at optical wavelengths, thus motivating our study. In X-rays, they are relatively bright, and Abell 223 shows a double structure. A filament has also been detected between the clusters both at optical and X-ray wavelengths. Aims. We analyse the optical properties of these two clusters based on deep imaging in two bands, derive their galaxy luminosity functions (GLFs) and correlate these properties with X-ray characteristics derived from XMM-Newton data. Methods. The optical part of our study is based on archive images obtained with the CFHT Megaprime/Megacam camera, covering a total region of about 1 deg(2), or 12.3 x 12.3 Mpc(2) at a redshift of 0.21. The X-ray analysis is based on archive XMM-Newton images. Results. The GLFs of Abell 222 in the g' and r' bands are well fit by a Schechter function; the GLF is steeper in r' than in g'. For Abell 223, the GLFs in both bands require a second component at bright magnitudes, added to a Schechter function; they are similar in both bands. The Serna & Gerbal method allows to separate well the two clusters. No obvious filamentary structures are detected at very large scales around the clusters, but a third cluster at the same redshift, Abell 209, is located at a projected distance of 19.2 Mpc. X-ray temperature and metallicity maps reveal that the temperature and metallicity of the X-ray gas are quite homogeneous in Abell 222, while they are very perturbed in Abell 223. Conclusions. The Abell 222/Abell 223 system is complex. The two clusters that form this structure present very different dynamical states. Abell 222 is a smaller, less massive and almost isothermal cluster. On the other hand, Abell 223 is more massive and has most probably been crossed by a subcluster on its way to the northeast. As a consequence, the temperature distribution is very inhomogeneous. Signs of recent interactions are also detected in the optical data where this cluster shows a ""perturbed"" GLF. In summary, the multiwavelength analyses of Abell 222 and Abell 223 are used to investigate the connection between the ICM and the cluster galaxy properties in an interacting system.