55 resultados para Fishery co-management model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Organs from the so-called marginal donors have been used with a significant higher risk of primary non function than organs retrieved from the optimal donors. We investigated the early metabolic changes and blood flow redistribution in splanchnic territory in an experimental model that mimics marginal brain-dead (BD) donor. Material/Methods: Ten dogs (21.3 +/- 0.9 kg), were subjected to a brain death protocol induced by subdural balloon inflation and observed for 30 min thereafter without ally additional interventions. Mean arterial and intracranial pressures, heart rate, cardiac output (CO), portal vein and hepatic artery blood flows (PVBF and HABF, ultrasonic flowprobe), and O(2)-derived variables were evaluated. Results: An increase in arterial pressure, CO, PVBF and HABF was observed after BD induction. At the end, an intense hypotension with normalization in CO (3.0 +/- 0.2 VS. 2.8 +/- 2.8 L/min) and PVBF (687 +/- 114 vs. 623 +/- 130 ml/min) was observed, whereas HABF (277 33 vs. 134 28 ml/min, p<0.005) remained lower than baseline values. Conclusions: Despite severe hypotension induced by sudden increase of intracranial pressure, the systemic and splanchnic blood flows were partially preserved without signs of severe hypoperfusion (i.e. hyperlactatemia). Additionally, the HABF was mostly negatively affected in this model of marginal BD donor. Our data suggest that not only the cardiac output, but the intrinsic hepatic microcirculatory mechanism plays a role in the hepatic blood flow control after BD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The pterygopalatine fossa (PPF) is a narrow space located between the posterior wall of the antrum and the pterygoid plates. Surgical access to the PPF is difficult because of its protected position and its complex neurovascular anatomy. Endonasal approaches using rod lens endoscopes, however, provide better visualization of this area and are associated with less morbidity than external approaches. Our aim was to develop a simple anatomical model using cadaveric specimens injected with intravascular colored silicone to demonstrate the endoscopic anatomy of the PPF. This model could be used for surgical instruction of the transpterygoid approach. Methods: We dissected six PPF in three cadaveric specimens prepared with intravascular injection of colored material using two different injection techniques. An endoscopic endonasal approach, including a wide nasoantral window and removal of the posterior antrum wall, provided access to the PPF. Results: We produced our best anatomical model injecting colored silicone via the common carotid artery. We found that, using an endoscopic approach, a retrograde dissection of the sphenopalatine artery helped to identify the internal maxillary artery (IMA) and its branches. Neural structures were identified deeper to the vascular elements. Notable anatomical landmarks for the endoscopic surgeon are the vidian nerve and its canal that leads to the petrous portion of the internal carotid artery (ICA), and the foramen rotundum, and V2 that leads to Meckel`s cave in the middle cranial fossa. These two nerves, vidian and V2, are separated by a pyramidal shaped bone and its apex marks the ICA. Conclusion: Our anatomical model provides the means to learn the endoscopic anatomy of the PPF and may be used for the simulation of surgical techniques. An endoscopic endonasal approach provides adequate exposure to all anatomical structures within the PPF. These structures may be used as landmarks to identify and control deeper neurovascular structures. The significance is that an anatomical model facilitates learning the surgical anatomy and the acquisition of surgical skills. A dissection superficial to the vascular structures preserves the neural elements. These nerves and their bony foramina, such as the vidian nerve and V2, are critical anatomical landmarks to identify and control the ICA at the skull base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Lung transplantation has become the mainstay therapy for patients with end-stage lung disease refractory to medical management. However, the number of patients listed for lung transplantation largely exceeds available donors. The study of lung preservation requires accurate, cost-effective small animal models. We have described a model of ex vivo rat lung perfusion using a commercially available system. Methods. Male Wistar rats weighing 250 g-300 g were anesthetized with intraperitoneal sodium thiopental (50 mg/kg body weight). The surgical technique included heart-lung block extraction, assembly, and preparation for perfusion and data collection. We used an IL-2 Isolated Perfused Rat or Guinea Pig Lung System (Harvard Apparatus, Holliston, Mass, United States; Hugo Sachs Elektronik, Alemanha). Results. Preliminary results included hemodynamic and pulmonary mechanics data gathered in the experiments. Conclusion. The isolated rat lung perfusion system is a reliable method to assess lung preservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RAS (renin angiotensin system) is classically involved in BP (blood pressure) regulation and water electrolyte balance, and in the central nervous system it has been mostly associated with homoeostatic processes, such as thirst, hormone secretion and thermoregulation. Epilepsies are chronic neurological disorders characterized by recurrent epileptic seizures that affect 1-3% of the world`s population, and the most commonly used anticonvulsants are described to be effective in approx. 70% of the population with this neurological alteration. Using a rat model of epilepsy, we found that components of the RAS, namely ACE (angiotensin-converting enzyme) and the AT(1) receptor (angiotensin II type I receptor) are up-regulated in the brain (2.6- and 8.2-fold respectively) following repetitive seizures. Subsequently, epileptic animals were treated with clinically used doses of enalapril, an ACE inhibitor, and losartan, an AT(1) receptor blocker, leading to a significant decrease in seizure severities. These results suggest that centrally acting drugs that target the RAS deserve further investigation as possible anticonvulsant agents and may represent an additional strategy in the management of epileptic patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To create a retinal neovascularization experimental model using intravitreal injection of microspheres loaded with latex-derived angiogenic fraction. Methods: Thirty-two albino New Zealand rabbits, divided in 4 groups of 8 animals, were enrolled in this study. Rabbits in groups I, II, and III received one intravitreal injection of PLGA (L-lactide-co-glycolide) microspheres with 10, 30, and 50 mu g of latex-derived angiogenic fraction into their right eyes, respectively, and group IV received 0.1 ml of microspheres without the angiogenic fraction. Weekly follow-up with ophthalmoscopy and fluorescein angiography was performed; the rabbits were sacrificed in the 4th week and their eyes processed for light microscopy. Results: All eyes from group I demonstrated increased retinal vascular tortuosity, observed from 14 days after injection and maintained for 28 days, otherwise without new vessels detection. All group II eyes showed vascular changes similar to group I. Fifty percent of the eyes from group II rabbits developed retinal neovascularization 21 days after injection. All eyes from group III demonstrated significant vascular tortuosity and retinal new vessels 2 weeks after injection, progressing to fibrovascular proliferation and tractional retinal detachment. No vascular changes or retinal new vessels were observed in group IV eyes. Light microscopy confirmed the existence of new vessels previously seen on fluorescein angiography, in retinal sections adjacent to the optic disc, not observed in sections at the same area in the control group. Conclusion: Thirty- and 50-mu g microspheres containing latex-derived angiogenic fraction injected into the vitreous cavity induced retinal neovascularization in rabbits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuropathic pain is a chronic disease resulting from dysfunction of the nervous system often due to peripheral nerve injury. Hypersensitivity to sensory Stimuli (mechanical, thermal or chemical) is a common source of pain in patients and ion channels involved in detecting these Stimuli are possible candidates for inducing and/or maintaining the pain. Transient receptor potential (TRP) channels expressed on nociceptors respond to different sensory stimuli and a few of them have been studied previously in the models of neuropathic pain. Using real-time PCR for quantification of all known TRP channels we identified several TRP channels, which have not been associated with nociception OF neuropathic pain before, to be expressed in the DRG and to be differentially regulated after spared nerve injury (SNI). Of all TRP channel members, TRPML3 showed the most dramatic change in animals exhibiting neuropathic pain behaviour compared to control animals. fit situ hybridisation showed a widespread increase of expression ill neurons of small, medium and large cell sizes, indicating expression ill multiple subtypes. Co-localisation of TRPML3 with CGRP, NF200 and IB4 staining confirmed a broad Subtype distribution. Expression studies during development showed that TRPML3 is all embryonic channel that is induced upon nerve injury in three different nerve injury models investigated. Thus. the current results link for the first time a re-expression of TRPML3 with the development of neuropathic pain conditions. In addition, decreased mRNA levels after SNI were seen for TRPM6, TRPM8, TRPV1, TRPA1, TRPC3, TRPC4 and TRPC5. (C) 2009 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The aim of the present study was to evaluate the effect of CO(2) laser irradiation (10.6 mu m) at 0.3 J/cm(2) (0.5 mu s; 226 Hz) on the resistance of softened enamel to toothbrushing abrasion, in vitro. Methods: Sixty human enamel samples were obtained, polished with silicon carbide papers and randomly divided into five groups (n = 12), receiving 5 different surface treatments: laser irradiation (L), fluoride (AmF/NaF gel) application (F), laser prior to fluoride (LF), fluoride prior to laser (FL), non-treated control (C). After surface treatment they were submitted to a 25-day erosive-abrasive cycle in 100 ml sprite light (90 s) and brushed twice daily with an electric toothbrush. Between the demineralization periods samples were immersed in supersaturated mineral solution. At the end of the experiments enamel surface loss was determined using a contact profilometer and morphological analysis was performed using scanning electron microscopy (SEM). For SEM analysis of demineralization pattern, cross-sectional cuts of cycled samples were prepared. The data were statistically analysed by one-way ANOVA model with subsequent pairwise comparison of treatments. Results: Abrasive surface loss was significantly lower in all laser groups compared to both control and fluoride groups (p < 0.0001 in all cases). Amongst the laser groups no significant difference was observed. Softened enamel layer underneath lesions was less pronounced in laser-irradiated samples. Conclusion: Irradiation of dental enamel with a CO(2) laser at 0.3 J/cm(2) (5 mu s, 226 Hz) either alone or in combination with amine fluoride gel significantly decreases toothbrushing abrasion of softened-enamel, in vitro. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The purpose of the study was to investigate whether dentine irradiation with a pulsed CO(2) laser (10.6 mu m) emitting pulses of 10 ms is capable of reducing dentine calcium and phosphorus losses in an artificial caries model. Design: The 90 dentine slabs obtained from bovine teeth were randomly divided into six groups (n = 15): negative control group (GC); positive control group, treated with fluoride 1.23% (GF); and laser groups irradiated with 8 J/cm(2) (L8); irradiated as in L8 + fluoride 1.23% (L8F); irradiated with 11j/cm(2) (L11); irradiated as in L11 + fluoride 1.23% (L11F). After laser irradiation the samples were submitted to a pH-cycling model for 9 days. The calcium and phosphorous contents in the de- and remineralization solutions were measured by means of inductively coupled plasma optical emission spectrometer - ICP-OES. Additionally intra-pulpal temperature measurements were performed. The obtained data were analysed by means of ANOVA and Tukey`s test (alpha = 0.05). Results: In the demineralization solutions the groups L11F and GF presented significantly lower means of calcium and phosphorous losses than the control group; and in L11F means were significantly lower than in the fluoride group. Both irradiation parameters tested caused intrapulpal temperature increase below 2 degrees C. Conclusion: It can be concluded that under the conditions of this study, CO(2) laser irradiation (10.6 mu m) with 11J/cm(2) (540 mJ and 10 Hz) of fluoride treated dentine surfaces decreases the loss of calcium and phosphorous in the demineralization process and does not cause excessive temperature increase inside the pulp chamber. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the cariostatic effects of CO(2) laser on enamel have been shown, its effects on root surface demineralization remains uncertain. The objectives of this in vitro research was to establish safe parameters for a pulsed 10.6 mu m CO(2) laser and to evaluate its effect on morphological features of the root surface, as well as on the reduction of root demineralization. Ninety-five human root surfaces were randomly divided into five groups: G1-No treatment (control); G2-2.5 J/cm(2); G3-4.0 J/cm(2); G4-5.0 J/cm(2); and G5-6.0 J/cm(2). Intrapulpal temperature was evaluated during root surface irradiation by a thermocouple and morphological changes were evaluated by SEM. After the surface treatment, the specimens were submitted to a 7-day pH-cycling model. Subsequently, the cross-sectional Knoop microhardness values were measured. For all irradiated groups, intrapulpal temperature changes were less than 1.5 degrees C. Scanning electron microscopy images indicated that fluences as low as 4.0 J/cm(2) were sufficient to induce morphological changes in the root surface. Additionally, for fluences reaching or exceeding 4.0 J/cm(2), laser-induced inhibitory effects on root surface demineralization were observed. It was concluded that laser energy density in the range of 4.0 to 6.0 J/cm(2) could be applied to a dental root to reduce demineralization of this surface without compromising pulp vitality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated whether subablative-pulsed CO(2) laser (10.6 mu m) irradiation, using fluences lower than 1 J/cm(2), was capable of reducing enamel acid solubility. Fifty-one samples of bovine dental enamel were divided into three groups: control group, which was not irradiated (CG); group laser A (LA) irradiated with 0.3 J/cm ; and group laser B (LB) irradiated with 0.7 J/cm(2). After irradiation, the samples were subjected to demineralization in an acetate buffer solution and were then analyzed by SEM. A finite-element model was used to calculate the temperature increase. The calcium and phosphorous content in the demineralization solution were measured with an ICP-OES. ANOVA and the t-test pairwise comparison (p < 0.016) revealed that LB showed significantly lower mean Ca and P content values in the demineralization solution than other groups. A reduction in the enamel solubility can be obtained with pulsed CO(2) laser irradiation (0.7 J/cm(2), 135 mJ/pulse, 74 Hz, 100 mu s) without any surface photomodification and a less than 2 degrees C temperature increase at a 3-mm depth from the surface.