165 resultados para Failure Status


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies show that exercise training and caloric restriction improve cardiac function in obesity. However, the molecular mechanisms underlying this effect on cardiac function remain unknown. Thus, we studied the effect of exercise training and/or caloric restriction on cardiac function and Ca(2+) handling protein expression in obese rats. To accomplish this goal, male rats fed with a high-fat and sucrose diet for 25 weeks were randomly assigned into 4 groups: high-fat and sucrose diet, high-fat and sucrose diet and exercise training, caloric restriction, and exercise training and caloric restriction. An additional lean group was studied. The study was conducted for 10 weeks. Cardiac function was evaluated by echocardiography and Ca(2+) handling protein expression by Western blotting. Our results showed that visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels were higher in rats on the high-fat and sucrose diet compared with the lean rats. Cardiac nitrate levels, reduced/oxidized glutathione, left ventricular fractional shortening, and protein expression of phosphorylated Ser(2808)-ryanodine receptor and Thr(17-)phospholamban were lower in rats on the high-fat and sucrose diet compared with lean rats. Exercise training and/or caloric restriction prevented increases in visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels and prevented reduction in cardiac nitrate levels and reduced: oxidized glutathione ratio. Exercise training and/or caloric restriction prevented reduction in left ventricular fractional shortening and in phosphorylation of the Ser(2808)-ryanodine receptor and Thr(17)-phospholamban. These findings show that exercise training and/or caloric restriction prevent cardiac dysfunction in high-fat and sucrose diet rats, which seems to be attributed to decreased circulating neurohormone levels. In addition, this nonpharmacological paradigm prevents a reduction in the Ser(2808)-ryanodine receptor and Thr(17-)phospholamban phosphorylation and redox status. (Hypertension. 2010;56:629-635.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bueno CR Jr, Ferreira JC, Pereira MG, Bacurau AV, Brum PC. Aerobic exercise training improves skeletal muscle function and Ca(2+) handling-related protein expression in sympathetic hyperactivity-induced heart failure. J Appl Physiol 109: 702-709, 2010. First published July 1, 2010; doi: 10.1152/japplphysiol.00281.2010.-The cellular mechanisms of positive effects associated with aerobic exercise training on overall intrinsic skeletal muscle changes in heart failure (HF) remain unclear. We investigated potential Ca(2+) abnormalities in skeletal muscles comprising different fiber compositions and investigated whether aerobic exercise training would improve muscle function in a genetic model of sympathetic hyperactivity-induced HF. A cohort of male 5-mo-old wild-type (WT) and congenic alpha(2A)/alpha(2C) adrenoceptor knockout (ARKO) mice in a C57BL/6J genetic background were randomly assigned into untrained and trained groups. Exercise training consisted of a 8-wk running session of 60 min, 5 days/wk (from 5 to 7 mo of age). After completion of the exercise training protocol, exercise tolerance was determined by graded treadmill exercise test, muscle function test by Rotarod, ambulation and resistance to inclination tests, cardiac function by echocardiography, and Ca(2+) handling-related protein expression by Western blot. alpha(2A)/alpha(2C)ARKO mice displayed decreased ventricular function, exercise intolerance, and muscle weakness paralleled by decreased expression of sarcoplasmic Ca(2+) release-related proteins [alpha(1)-, alpha(2)-, and beta(1)-subunits of dihydropyridine receptor (DHPR) and ryanodine receptor (RyR)] and Ca(2+) reuptake-related proteins [sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) 1/2 and Na(+)/Ca(2+) exchanger (NCX)] in soleus and plantaris. Aerobic exercise training significantly improved exercise tolerance and muscle function and reestablished the expression of proteins involved in sarcoplasmic Ca(2+) handling toward WT levels. We provide evidence that Ca(2+) handling-related protein expression is decreased in this HF model and that exercise training improves skeletal muscle function associated with changes in the net balance of skeletal muscle Ca(2+) handling proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to investigate the effects of physical training, and different levels of protein intake in the diet, on the growth and nutritional status of growing rats. Newly-weaned Wistar rats (n=48) were distributed into six experimental groups: three of them were subjected to physical swim training (1 h per day. 5 d per week, for 4 wk, after 2 wk of familiarization) and the other three were considered as controls (non-trained). Each pair of groups, trained and non-trained, received diets with a different level of protein in their composition: 14%. 21% or 28%. The animals were euthanized at the end of the training period and the following analyses were performed: proteoglycan synthesis as a biomarker of bone and cartilage growth, IGF-I (insulin-like growth factor-I) assay as a biomarker of growth and nutritional status. total RNA and protein concentration and protein synthesis measured in vivo using a large-dose phenylalanine method. As a main finding, increased dietary protein, combined with physical training, was able to improve neither tissue protein synthesis nor muscle growth. In addition, cartilage and bone growth seem to be deteriorated by the lower and the higher levels of protein intake. Our data allow us to conclude that protein enhancement in the diet, combined with physical exercise, does not stimulate tissue protein synthesis or muscle mass growth. Furthermore, physical training, combined with low protein intake, was not favorable to bone development in growing animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overwhelming evidence supports the importance of the sympathetic nervous system in heart failure. In contrast, much less is known about the role of failing cholinergic neurotransmission in cardiac disease. By using a unique genetically modified mouse line with reduced expression of the vesicular acetylcholine transporter (VAChT) and consequently decreased release of acetylcholine, we investigated the consequences of altered cholinergic tone for cardiac function. M-mode echocardiography, hemodynamic experiments, analysis of isolated perfused hearts, and measurements of cardiomyocyte contraction indicated that VAChT mutant mice have decreased left ventricle function associated with altered calcium handling. Gene expression was analyzed by quantitative reverse transcriptase PCR and Western blotting, and the results indicated that VAChT mutant mice have profound cardiac remodeling and reactivation of the fetal gene program. This phenotype was attributable to reduced cholinergic tone, since administration of the cholinesterase inhibitor pyridostigmine for 2 weeks reversed the cardiac phenotype in mutant mice. Our findings provide direct evidence that decreased cholinergic neurotransmission and underlying autonomic imbalance cause plastic alterations that contribute to heart dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiomyocyte hypertrophy occurs in response to a variety of physiological and pathological stimuli. While pathological hypertrophy in heart failure is usually coupled with depressed contractile function, physiological hypertrophy associates with increased contractility. In the present study, we explored whether 8 weeks of moderate intensity exercise training would lead to a cardiac anti-remodelling effect in an experimental model of heart failure associated with a deactivation of a pathological (calcineurin/NFAT, CaMKII/HDAC) or activation of a physiological (Akt-mTOR) hypertrophy signalling pathway. The cardiac dysfunction, exercise intolerance, left ventricle dilatation, increased heart weight and cardiomyocyte hypertrophy from mice lacking alpha(2A) and alpha(2C) adrenoceptors (alpha(2A)/alpha(2C)ARKO mice) were associated with sympathetic hyperactivity induced heart failure. The relative contribution of Ca(2+)-calmodulin high-affinity (calcineurin/NFAT) and low-affinity (CaMKII/HDAC) targets to pathological hypertrophy of alpha(2A)/alpha(2C)ARKO mice was verified. While nuclear calcineurin B, NFATc3 and GATA-4 translocation were significantly increased in alpha(2A)/alpha(2C)ARKO mice, no changes were observed in CaMKII/HDAC activation. As expected, cyclosporine treatment decreased nuclear translocation of calcineurin/NFAT in alpha(2A)/alpha(2C)ARKO mice, which was associated with improved ventricular function and a pronounced anti-remodelling effect. The Akt/mTOR signalling pathway was not activated in alpha(2A)/alpha(2C)ARKO mice. Exercise training improved cardiac function and exercise capacity in alpha(2A)/alpha(2C)ARKO mice and decreased heart weight and cardiomyocyte width paralleled by diminished nuclear NFATc3 and GATA-4 translocation as well as GATA-4 expression levels. When combined, these findings support the notion that deactivation of calcineurin/NFAT pathway-induced pathological hypertrophy is a preferential mechanism by which exercise training leads to the cardiac anti-remodelling effect in heart failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of exercise training (ET) on cardiac renin-angiotensin system (RAS) was investigated in 3-5 month-old mice lacking alpha(2A-) and alpha(2C-)adrenoceptors (alpha(2A)/alpha(2C)ARKO) that present heart failure (HF) and wild type control (WT). ET consisted of 8-week running sessions of 60 min, 5 days/week. In addition, exercise tolerance, cardiac structural and function analysis were made. At 3 months, fractional shortening and exercise tolerance were similar between groups. At 5 months, alpha(2A)/alpha(2C)ARKO mice displayed ventricular dysfunction and fibrosis associated with increased cardiac angiotensin (Ang) II levels (2.9-fold) and increased local angiotensin-converting enzyme activity (ACE 18%). ET decreased alpha(2A)/alpha(2C)ARKO cardiac Ang II levels and ACE activity to age-matched untrained WT mice levels while increased ACE2 expression and prevented exercise intolerance and ventricular dysfunction with little impact on cardiac remodeling. Altogether, these data provide evidence that reduced cardiac RAS explains, at least in part, the beneficial effects of ET on cardiac function in a genetic model of HF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

beta-blockers, as class, improve cardiac function and survival in heart failure (HF). However, the molecular mechanisms underlying these beneficial effects remain elusive. In the present study, metoprolol and carvedilol were used in doses that display comparable heart rate reduction to assess their beneficial effects in a genetic model of sympathetic hyperactivity-induced HF (alpha(2A)/alpha(2C)-ARKO mice). Five month-old HF mice were randomly assigned to receive either saline, metoprolol or carvedilol for 8 weeks and age-matched wild-type mice (WT) were used as controls. HF mice displayed baseline tachycardia, systolic dysfunction evaluated by echocardiography, 50% mortality rate, increased cardiac myocyte width (50%) and ventricular fibrosis (3-fold) compared with WT. All these responses were significantly improved by both treatments. Cardiomyocytes from HF mice showed reduced peak [Ca(2+)](i) transient (13%) using confocal microscopy imaging. Interestingly, while metoprolol improved [Ca(2+)](i) transient, carvedilol had no effect on peak [Ca(2+)](i) transient but also increased [Ca(2+)] transient decay dynamics. We then examined the influence of carvedilol in cardiac oxidative stress as an alternative target to explain its beneficial effects. Indeed, HF mice showed 10-fold decrease in cardiac reduced/oxidized glutathione ratio compared with WT, which was significantly improved only by carvedilol treatment. Taken together, we provide direct evidence that the beneficial effects of metoprolol were mainly associated with improved cardiac Ca(2+) transients and the net balance of cardiac Ca(2+) handling proteins while carvedilol preferentially improved cardiac redox state. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein kinase C beta II (PKC beta II) levels increase in the myocardium of patients with end-stage heart failure (HF). Also targeted overexpression of PKC beta II in the myocardium of mice leads to dilated cardiomyopathy associated with inflammation, fibrosis and myocardial dysfunction. These reports suggest a deleterious role of PKC beta II in HF development. Using a post-myocardial infarction (MI) model of HF in rats, we determined the benefit of chronic inhibition of PKC beta II on the progression of HF over a period of 6 weeks after the onset of symptoms and the cellular basis for these effects. Four weeks after MI, rats with HF signs that were treated for 6 weeks with the PKC beta II selective inhibitor (beta IIV5-3 conjugated to TAT(47-57) carrier peptide) (3 mg/kg/day) showed improved fractional shortening (from 21% to 35%) compared to control (TAT(47-57) carrier peptide alone). Formalin-fixed mid-ventricle tissue sections stained with picrosirius red, haematoxylin and eosin and toluidine blue dyes exhibited a 150% decrease in collagen deposition, a two-fold decrease in inflammation and a 30% reduction in mast cell degranulation, respectively, in rat hearts treated with the selective PKC beta II inhibitor. Further, a 90% decrease in active TGF beta 1 and a significant reduction in SMAD2/3 phosphorylation indicated that the selective inhibition of PKC beta II attenuates cardiac remodelling mediated by the TGF-SMAD signalling pathway. Therefore, sustained selective inhibition of PKC beta II in a post-MI HF rat model improves cardiac function and is associated with inhibition of pathological myocardial remodelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although neurohumoral excitation is the hallmark of heart failure (HF), the mechanisms underlying this alteration are not entirely known. Abnormalities in several systems contribute to neurohumoral excitation in HF, including arterial and cardiopulmonary baroreceptors, central and peripheral chemoreceptors, cardiac chemoreceptors, and central nervous system abnormalities. Exercise intolerance is characteristic of chronic HF, and growing evidence strongly suggests that exercise limitation in patients with chronic HF is not due to elevated filling pressures or inadequate cardiac output during exercise, but instead due to skeletal myopathy. Several lines of evidence suggest that sympathetic excitation contributes to the skeletal myopathy of HF, since sympathetic activity mediates vasoconstriction at rest and during exercise likely restrains muscle blood flow, arteriolar dilatation, and capillary recruitment, leading to underperfused areas of working muscle, and areas of muscle ischemia, release of reactive oxygen species (ROS), and inflammation. Although controversial, either unmyelinated, metabolite-sensitive afferent fibers, and/or myelinated, mechanosensitive afferent fibers in skeletal muscle underlie the exaggerated sympathetic activity in HF. Exercise training has emerged as a unique non-pharmacological strategy for the treatment of HF. Regular exercise improves functional capacity and quality of life, and perhaps prognosis in chronic HF patients. Recent studies have provided convincing evidence that these benefits in chronic HF patients are mediated by significant reduction in central sympathetic outflow as a consequence of improvement in arterial and chemoreflex controls, and correction of central nervous system abnormalities, and increase in peripheral blood flow with reduction in cytokines and increase in mass muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sympathetic hyperactivity (SH) and renin angiotensin system (RAS) activation are commonly associated with heart failure (HF), even though the relative contribution of these factors to the cardiac derangement is less understood. The role of SH on RAS components and its consequences for the HF were investigated in mice lacking alpha(2A) and alpha(2C) adrenoceptor knockout (alpha(2A)/alpha(2C) ARKO) that present SH with evidence of HF by 7 mo of age. Cardiac and systemic RAS components and plasma norepinephrine (PN) levels were evaluated in male adult mice at 3 and 7 mo of age. In addition, cardiac morphometric analysis, collagen content, exercise tolerance, and hemodynamic assessments were made. At 3 mo, alpha(2A)/alpha(2C)ARKO mice showed no signs of HF, while displaying elevated PN, activation of local and systemic RAS components, and increased cardiomyocyte width (16%) compared with wild-type mice (WT). In contrast, at 7 mo, alpha(2A)/alpha(2C)ARKO mice presented clear signs of HF accompanied only by cardiac activation of angiotensinogen and ANG II levels and increased collagen content (twofold). Consistent with this local activation of RAS, 8 wk of ANG II AT(1) receptor blocker treatment restored cardiac structure and function comparable to the WT. Collectively, these data provide direct evidence that cardiac RAS activation plays a major role underlying the structural and functional abnormalities associated with a genetic SH-induced HF in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise training (ET) is a coadjuvant therapy in preventive cardiology. It delays cardiac dysfunction and exercise intolerance in heart failure (HF); however, the molecular mechanisms underlying its cardioprotection are poorly understood. We tested the hypothesis that ET would prevent Ca2+ handling abnormalities and ventricular dysfunction in sympathetic hyperactivity-induced HF mice. A cohort of male wildtype (WT) and congenic (alpha 2A/alpha 2C)-adrenoceptor knockout ((alpha 2A/alpha 2C)ARKO) mice with C57BL6/J genetic background (3-5 mo of age) were randomly assigned into untrained and exercise-trained groups. ET consisted of 8-wk swimming session, 60 min, 5 days/wk. Fractional shortening (FS) was assessed by two-dimensional guided M-mode echocardiography. The protein expression of ryanodine receptor (RyR), phospho-Ser(2809)-RyR, sarcoplasmic reticulum Ca2+ ATPase (SERCA2), Na+/Ca2+ exchanger (NCX), phospholamban (PLN), phospho-Ser(16)-PLN, and phospho-Thr(17)-PLN were analyzed by Western blotting. At 3 mo of age, no significant difference in FS and exercise tolerance was observed between WT and (alpha 2A/alpha 2C)ARKO mice. At 5 mo, when cardiac dysfunction is associated with lung edema and increased plasma norepinephrine levels, (alpha 2A/alpha 2C)ARKO mice presented reduced FS paralleled by decreased SERCA2 (26%) and NCX (34%). Conversely, (alpha 2A/alpha 2C)ARKO mice displayed increased phospho-Ser(16)-PLN (76%) and phospho-Ser(2809)-RyR (49%). ET in (alpha 2A/alpha 2C)ARKO mice prevented exercise intolerance, ventricular dysfunction, and decreased plasma norepinephrine. ET significantly increased the expression of SERCA2 (58%) and phospho-Ser(16)-PLN (30%) while it restored the expression of phospho-Ser(2809)-RyR to WT levels. Collectively, we provide evidence that improved net balance of Ca2+ handling proteins paralleled by a decreased sympathetic activity on ET are, at least in part, compensatory mechanisms against deteriorating ventricular function in HF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to analyze the association between nutritional status and blood pressure in adolescents from a private school. Were recruited 316 young of both gender with age raging from 11 to 15 years old. Were measured body mass, stature, systolic blood pressure and diastolic blood pressure. The statistic procedures were composed by median, interquartile range, chi-square test and Poisson regression. The prevalence of overweight and high blood pressure was significantly higher in boys (38% and 24%, respectively) when compared to girls (19.3% and 14.4%, respectively). Overweight adolescents presented a higher risk (about 2-fold) to develop high blood pressure. In conclusion, overweight seems to be associate with high blood pressure in adolescents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Families with a child on chronic peritoneal dialysis have to assume a significant burden of care, intensifying the demands and the reorganization of roles in the families of children. The purpose of this study is to describe the implications of role changes in families of children with chronic renal disease on peritoneal dialysis. This is a case study of four families of children with chronic renal disease on peritoneal dialysis. Fourteen family members participate in the study. After the child`s chronic kidney failure and the start of treatment, each relative`s ways, acts and functions are changed, maintained or adapted to the new family dynamics, imposed by the child`s treatment conditions. Appropriate role assessment provides the nurse and the families of children with chronic renal failure on peritoneal dialysis with insight regarding current and potential health problems and aids in identifying the needs of the families.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic behavior of composite laminates is very complex because there are many concurrent phenomena during composite laminate failure under impact load. Fiber breakage, delaminations, matrix cracking, plastic deformations due to contact and large displacements are some effects which should be considered when a structure made from composite material is impacted by a foreign object. Thus, an investigation of the low velocity impact on laminated composite thin disks of epoxy resin reinforced by carbon fiber is presented. The influence of stacking sequence and energy impact was investigated using load-time histories, displacement-time histories and energy-time histories as well as images from NDE. Indentation tests results were compared to dynamic results, verifying the inertia effects when thin composite laminate was impacted by foreign object with low velocity. Finite element analysis (FEA) was developed, using Hill`s model and material models implemented by UMAT (User Material Subroutine) into software ABAQUS (TM), in order to simulate the failure mechanisms under indentation tests. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to manufacturing or damage process, brittle materials present a large number of micro-cracks which are randomly distributed. The lifetime of these materials is governed by crack propagation under the applied mechanical and thermal loadings. In order to deal with these kinds of materials, the present work develops a boundary element method (BEM) model allowing for the analysis of multiple random crack propagation in plane structures. The adopted formulation is based on the dual BEM, for which singular and hyper-singular integral equations are used. An iterative scheme to predict the crack growth path and crack length increment is proposed. This scheme enables us to simulate the localization and coalescence phenomena, which are the main contribution of this paper. Considering the fracture mechanics approach, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of multi-fractured domains, loaded up to rupture, are considered to illustrate the applicability of the proposed method. (C) 2011 Elsevier Ltd. All rights reserved.