82 resultados para Estrogen a and ß receptors


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE The P2X receptor family consists of seven subunit types - P2X1-P2X7. All but P2X6 are able to assemble as homotrimers. In addition, various subunit permutations have been reported to form heterotrimers. Evidence for heterotrimer formation includes co-localization, co-immunoprecipitation and the generation of receptors with novel functional properties; however, direct structural evidence for heteromer formation, such as chemical cross-linking and single-molecule imaging, is available in only a few cases. Here we examined the nature of the interaction between two pairs of subunits - P2X2 and P2X4, and P2X4 and P2X7. EXPERIMENTAL APPROACH We used several experimental approaches, including in situ proximity ligation, co-immunoprecipitation, co-isolation on affinity beads, chemical cross-linking and atomic force microscopy (AFM) imaging. KEY RESULTS Both pairs of subunits co-localize upon co-transfection, interact intimately within cells, and can be co-immunoprecipitated and co-isolated from cell extracts. Despite this, chemical cross-linking failed to show evidence for heteromer formation. AFM imaging of isolated receptors showed that all three subunits had the propensity to form receptor dimers. This self-association is likely to account for the observed close interaction between the subunit pairs, in the absence of true heteromer formation. CONCLUSIONS AND IMPLICATIONS We conclude that both pairs of receptors interact in the form of distinct homomers. We urge caution in the interpretation of biochemical evidence indicating heteromer formation in other cases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

arginine-vasopressin in the parvocellular neurons of the hypothalamic paraventricular nucleus is known to play an important role in the control of the hypothalamo-pituitary-adrenal axis. In the present study, we verify plasma corticosterone levels, the distribution of glucocorticoid receptor- and arginine-vasopressin-positive neurons, and the co-localization of both glucocorticoid receptors and arginine-vasopressin in neurons in the anterior and medial parvocellular subdivisions of the paraventricular nucleus after manipulations of the hypothalamus-pituitary-adrenal axis. Normal, sham surgery, and adrenalectomized male rats were subjected to intraperitoneal injections of saline or dexamethasone to measure plasma corticosterone levels by a radioimmunoassay. We also examined arginine-vasopressin and glucocorticoid receptor immunofluorescence in sections from the paraventricular nucleus. Our results showed that the immunoreactivity of arginine-vasopressin neurons increased in the anterior parvocellular subdivision and decreased in the medial parvocellular subdivision from adrenalectomized rats treated with dexamethasone. On the other hand, we showed that the immunoreactivity of glucocorticoid receptors increased in the anterior and medial parvocellular subdivisions of these same animals. However, the immunoreactivity of glucocorticoid receptors is higher in the medial parvocellular than anterior parvocellular subdivision. The co-localization of arginine-vasopressin and glucocorticoid receptors was found only in the medial parvocellular subdivision. These findings indicate that glucocorticoids have direct actions on arginine-vasopressin-positive neurons in the medial parvocellular but not anterior parvocellular subdivision. There is a differentiated pattern of arginine-vasopressin-positive neuron expression between the anterior and medial parvocellular subdivisions. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tonic immobility (TI) is an innate defensive behaviour elicited by physical restriction and Postural inversion, and is characterised by a profound and temporary state of akinesis. Our previous studies demonstrated that glutamatergic stimulation of the dorsomedial/dorsolateral Portion of periaqueductal gray matter (dPAG) decreases the duration of TI in guinea pigs (Cavia porcellus). Furthermore, evidence suggests that the anterior cingulate cortex (ACC) constitutes an important Source of glutamate for the dPAG. Hence, in the current study, we investigated the effects of microinjection of the excitatory amino acid (EAA) agonist DL-homocysteic acid (DLH) and the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 into the ACC on the duration of TI in guinea pigs. We also assessed the effect of the NMDA receptor antagonist (MK-801) into the dorsal periaqueductal gray matter (dPAG) prior to DLH microinjection into the ACC on the TI duration in the guinea pig. Our results demonstrated that DLH microinjections into the ACC decreased the duration of TI. This effect was blocked by previous MK-801 microinjections into the ACC or into the dPAG. The MK-801 microinjections alone did not influence TI duration. These results provide the new insight that EAAs in the ACC can decrease the duration of TI. The mechanism seems to be dependent on the NMDA receptors present in the ACC and in the dPAG. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tonic immobility (TI) is an innate defensive behavior characterized by a state of physical inactivity and diminished responsiveness to environmental stimuli. Behavioral adaptations to changes in the external and internal milieu involve complex neuronal network activity and a large number of chemical neurotransmitters. The TI response is thought to be influenced by serotonin (5-HT) activity in the central nervous system (CNS) of vertebrates, but the neuronal groups involved in the mechanisms underlying this behavior are poorly understood. Owing to its extensive afferents and efferents, the dorsal raphe nucleus (DRN) has been implicated in a great variety of physiological and behavioral functions. in the current study, we investigated the influence of serotonergic 5-HT(1A) and 5-HT(2) receptor activity within the DRN on the modulation of TI behavior in the guinea pig. Microinjection of a 5-HT(1A) receptor agonist (8-OH-DPAT, 0.01 and 0.1 mu g) decreased TI behavior, an effect blocked by pretreatment with WAY-100635 (0.033 mu g), a 5-HT(1A) antagonist. In contrast, activation of 5-HT(2) receptors within the DRN (alpha-methyl-5-HT, 0.5 mu g) increased the TI duration, and this effect could be reversed by pretreatment with an ineffective dose (0.01 mu g) of ketanserine. Since the 5-HT(1A) and 5-HT(2) agonists decreased and increased, respectively, the duration of TI, different serotonin receptor subtypes may play distinct roles in the modulation of TI in the guinea pig. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Osteopontin (OPN) is a secreted, calcium-binding phosphorylated glycoprotein involved in several physiological and pathological events such as angiogenesis, apoptosis, inflammation, wound healing, vascular remodeling, calcification of mineralized tissues, and induction of cell proteases. There is growing interest in the role of OPN in breast cancer. In an attempt to obtain new insight into the pathogenesis of OPN-associated breast carcinomas, an immunohistochemical panel with 17 primary antibodies including cytokeratins and key regulators of the cell cycle was performed in 100 formalin-fixed paraffin-embedded samples of invasive breast carcinomas. OPN was expressed in 65% of tumors and was negatively correlated with estrogen (p=0.0350) and progesterone (p=0.0069) receptors, but not with the other markers and clinicopathological features evaluated including age, menstrual status, pathological grading, tumor size, and metastasis. There was no correlation between OPN expression and carcinomas of the basal-like phenotype (p=0.1615); however, OPN correlated positively with c-erbB-2 status (p=0.0286) and negatively with carcinomas of the luminal subtype (p=0.0353). It is well known that carcinomas overexpressing c-erbB-2 protein have a worse prognosis than luminal tumors. Here, we hypothesize that the differential expression of OPN in the first subtype of carcinomas may contribute to their more aggressive behavior. (Int J Biol Markers 2008; 23: 154-60)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction between the reproductive axis and energy balance suggests that leptin acts as a possible mediator. This hormone acts in the regulation of metabolism, feeding behaviour and reproduction. Animals homozygous for the gene `ob` (ob/ob) are obese and infertile, and these effects are reversed after systemic administration of leptin. Thus, the present study aimed to determine: (i) whether cells that express leptin also express oestrogen receptors of type-alpha (ER-alpha) or -beta (ER-beta) in the medial preoptic area (MPOA) and in the arcuate (ARC), dorsomedial (DMH) and ventromedial hypothalamic nucleus and (ii) whether there is change in the gene and protein expression of leptin in these brain areas in ovariectomised (OVX) animals when oestrogen-primed. Wistar female rats with normal oestrous cycles or ovariectomised oestrogen-primed or vehicle (oil)-primed were utilised. To determine whether there was a co-expression, immunofluorescence was utilised for double staining. Confocal microscopy was used to confirm the co-expression. The technique of real-time polymerase chain reaction and western blotting were employed to analyse gene and protein expression, respectively. The results obtained showed co-expression of leptin and ER-alpha in the MPOA and in the DMH, as well as leptin and ER-beta in the MPOA, DMH and ARC. However, we did not detect leptin in the MPOA, ARC and DMH using western blotting and there was no statistical difference in leptin gene expression in the MPOA, DMH, ARC, pituitary or adipose tissue between OVX rats treated with oestrogen or vehicle. In conclusion, the results obtained in the present study confirm that the brain is also a source of leptin and reveal co-expression of oestrogen receptors and leptin in the same cells from areas related to reproductive function and feeding behaviour. Although these data corroborate the previous evidence obtained concerning the interaction between the action of brain leptin and reproductive function, the physiological relevance of this interaction remains uncertain and additional studies are necessary to elucidate the exact role of central leptin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is evidence that fibroblast growth factors (FGFs) are involved in the regulation of growth and regression of the corpus luteum (CL). However, the expression pattern of most FGF receptors (FGFRs) during CL lifespan is still unknown. The objective of the present study was to determine the pattern of expression of `B` and `C` splice variants of FGFRs in the bovine CL. Bovine CL were collected from an abattoir and classed as corpora hemorrhagica (Stage I), developing (Stage II), developed (Stage III) or regressed (Stage IV) CL. Expression of FGFR mRNA was measured by semiquantitative reverse transcription-polymerase chain reaction and FGFR protein was localised by immunohistochemistry. Expression of mRNA encoding the `B` and `C` spliced forms of FGFR1 and FGFR2 was readily detectable in the bovine CL and was accompanied by protein localisation. FGFR1C and FGFR2C mRNA expression did not vary throughout CL lifespan, whereas FGFR1B was upregulated in the developed (Stage III) CL. FGFR3B, FGFR3C and FGFR4 expression was inconsistent in the bovine CL. The present data indicate that FGFR1 and FGFR2 splice variants are the main receptors for FGF action in the bovine CL.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The periaqueductal gray (PAG) has been reported as a potential site for opioid regulation of behavioral selection. Opioid-mediated behavioral and physiological responses differ between nulliparous and multiparous females. This study addresses the effects of multiple reproductive experiences on mu-, kappa- and delta-opioid receptor (Oprm1, Oprk1, and Oprd1 respectively) gene activity and mu, kappa and delta protein expression (MOR, KOR and DOR respectively) in the PAG of the female rats. This was done by evaluating the opioid gene expression using real-time (RT-PCR) and quantification of each protein receptor by Western blot analysis. The RT-PCR results show that multiple reproductive experiences increase Oprm1 and Oprk1 gene expression. Western blot analysis revealed increased MOR and KOR while DOR protein was decreased in multiparous animals. Taken together, these data suggest that multiple reproductive experiences influence both gene activity and opioid receptor expression in the PAG. Post-translational mechanisms seem particularly relevant for DOR expression. Thus, opioid transmission in the PAG might be modulated by different mechanisms of multiparity-induced plasticity according to the opioid receptor type.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine to specific nuclear receptors. Organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, have been hypothesized to target the action of thyroid hormones on the mammary gland and play a role in mediating or augmenting a galactopoietic response to bovine somatotropin (bST). Additionally, tissue responsiveness to thyroid hormones may be altered by changes in the number or affinity of nuclear receptors for thyroid hormones. In the present study, effects of bST and bovine growth hormone-releasing factor (bGRF) on thyroid hormone receptors in liver and mammary gland were studied. Lactating Holstein cows received continuous infusions of bST or bGRF for 63 d or served as uninfused controls. Nuclei were isolated from harvested mammary and liver tissues and incubated with [(125)I]-triiodothyronine. Treatments did not alter the capacity or affinity of specific binding sites for triiodothyronine in liver or mammary nuclei. Evaluation of transcript abundance for thyroid hormone receptors showed that isoforms of thyroid hormone receptor or retinoid receptor (which may influence thyroid receptor action) expressed in the mammary gland were not altered by bST or bGRF treatment. Data do not support the hypothesis that administration of bST or bGRF alters sensitivity of mammary tissue by changing expression of thyroid hormone receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cutaneous leishmaniasis (CL) includes different clinical manifestations displaying diverse intensities of dermal Inflammatory infiltrate Diffuse CL (DCL) cases are hyporesponsive and lesions show very few lymphocytes and a predominance of macrophages In contrast localized CL (LCL) cases are responsive to leishmanial antigen and lesions exhibit granulocytes and mononuclear cell infiltration in the early phases changing to a pattern with numerous lymphocytes and macrophages later in the lesion Therefore different chemokines may affect the predominance of cell infiltration in distinct clinical manifestations In lesions from LCL patients we examined by flow cytometry the presence of different chemokines and their receptors in T cells and we verified a higher expression of CXCR3 in the early stages of LCL (less than 30 days of infection) and a higher expression of CCR4 in the late stages of disease (more than 60 days of infection) We also observed a higher frequency of T cells producing IL-10 in the late stage of LCL Using immunohistochemistry we observed a higher expression of CCL7 CCL17 in lesions from late LCL as well as CCR4 suggesting a preferential recruitment of regulatory T cells in the late LCL Comparing lesions from LCL and DCL patients we observed a higher frequency of CCL7 in DCL lesions These results point out the Importance of the chemokines defining the different types of cells recruited to the site of the infection which could be related to the outcome of infection as well as the clinical form observed (C) 2010 American Society for Histocompatibility and Immunogenetics Published by Elsevier Inc All rights reserved

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has been suggested that the medullary raphe (MR) plays a key role in the physiological responses to hypoxia and hypercapnia. We assessed the role of ionotropic glutamate receptors in the rostral MR (rMR) in the respiratory responses to hypoxia and hypercapnia by measuring pulmonary ventilation (V(E)) and body temperature (Tb) of male Wistar rats before and after microinjecting Kynurenic acid (KY, an ionotropic glutamate receptors antagonist, 0.1 mM) into the rMR followed by 60 min of hypoxia (7% O(2)) or hypercapnia exposure (7% CO(2)). Compared to the control group, the ventilatory response to hypoxia was attenuated in animals treated with KY intra-rMR, however the ventilatory response to hypercapnia increased significantly. No differences in Tb among groups were observed during hypoxia or hypercapnia. These data suggest that the glutamate acting on ionotropic receptors in the rMR exerts an excitatory modulation on hyperventilation induced by hypoxia but an inhibitory modulation on the hypercapnia-induced hyperpnea. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the effect of TAK-778 [(2R, 4S)-(-)-N-(4-diethoxyphosphorylmethylphenyl)-1,2,4,5-tetrahydro-4-methyl-7,8-methylenedioxy-5-oxo-3-benzothiepin-2-carboxamide)] on in vitro osteogenic events and on gene expression of osteoblastic cells derived from human alveolar bone and the participation of estrogen receptors (ERs) on such effect. Osteoblastic cells were subcultured, with or without TAK-778 (10(-5) M), to evaluate cell growth and viability, total protein content, and alkaline phosphatase (ALP) activity at 7, 14, and 21 days; bone-like formation at 21 days; and gene expression, using cDNA microarray, at 7 days. Also, osteoblastic cells were exposed to TAK-778 (10-5 M) combined to ICI182,780, a nonspecific ER antagonist (10(-6) M), and gene expression was evaluated by real-time polymerase chain reaction (PCR) at 7 days. TAK-778 induced a reduction in culture growth and an increase in cell synthesis, ALP activity, and bone-like formation. The cDNA microarray showed genes associated with cell adhesion and differentiation, skeletal development, ossification, and transforming growth factor-P receptor signaling pathway, with a tendency to be higher expressed in cells exposed to TAK-778. The gene expression of ALP, osteocalcin, Msh homeobox 2, receptor activator of NF-kappa B ligand, and intercellular adhesion molecule 1 was increased by TAK-778 as demonstrated by real-time PCR, and this effect was antagonized by ICI182,780. The present results demonstrated that TAK-778 acts at a transcriptional level to enhance the in vitro osteogenic process and that its effect on gene expression of osteoblastic cells is mediated, at least partially, through ERs. Based on these findings, TAK-778 could be considered in the treatment of bone metabolic disorders. Exp Biol Med 234:190-199, 2009

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim: In the present study, we assessed the role of 5-hydroxytryptamine (5-HT) receptors (5-HT1A, 5-HT2 and 5-HT7) in the nucleus raphe magnus (NRM) on the ventilatory and thermoregulatory responses to hypoxia. Methods: To this end, pulmonary ventilation (V-E) and body temperature (T-b) of male Wistar rats were measured in conscious rats, before and after a 0.1 mu L microinjection of WAY-100635 (5-HT1A receptor antagonist, 3 mu g 0.1 mu L-1, 56 mM), ketanserin (5-HT2 receptor antagonist, 2 mu g 0.1 mu L-1, 36 mM) and SB269970 (5-HT7 receptor antagonist, 4 mu g 0.1 mu L-1, 103 mM) into the NRM, followed by 60 min of severe hypoxia exposure (7% O-2). Results: Intra-NMR microinjection of vehicle (control rats) or 5-HT antagonists did not affect V-E or T-b during normoxic conditions. Exposure of rats to 7% O-2 evoked a typical hypoxia-induced anapyrexia after vehicle microinjections, which was not affected by microinjection of WAY-100635, SB269970 or ketanserin. The hypoxia-induced hyperpnoea was not affected by SB269970 and ketanserin intra-NMR. However, the treatment with WAY-100635 intra-NRM attenuated the hypoxia-induced hyperpnoea. Conclusion: These data suggest that 5-HT acting on 5-HT1A receptors in the NRM increases the hypoxic ventilatory response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nuclear factor-kappa B (NFKB), a pivotal player in inflammatory responses, is constitutively expressed in the pineal gland. Corticosterone inhibits pineal NFKB leading to an enhancement of melatonin production, while tumor necrosis factor (TNF) leads to inhibition of Aa-nat transcription and the production of N-acetylserotonin in cultured glands. The reduction in nocturnal melatonin surge favors the mounting of the inflammatory response. Despite these data, there is no clear evidence of the ability of the pineal gland to recognize molecules that signal infection. This study investigated whether the rat pineal gland expresses receptors for lipopolysaccharide (LPS), the endotoxin from the membranes of Gram-negative bacteria, and to establish the mechanism of action of LPS. Here, we show that pineal glands possess both CD14 and toll-like receptor 4 (TLR4), membrane proteins that bind LPS and trigger the NFKB pathway. LPS induced the nuclear translocation of p50/p50 and p50/RELA dimers and the synthesis of TNF. The maximal expression of TNF in cultured glands coincides with an increase in the expression of TNF receptor 1 (TNFR1) in isolated pinealocytes. In addition, LPS inhibited the synthesis of N-acetylserotonin and melatonin. Therefore, the pineal gland transduces Gram-negative endotoxin stimulation by producing TNF and inhibiting melatonin synthesis. Here, we provide evidence to reinforce the idea of an immune-pineal axis, showing that the pineal gland is a constitutive player in the innate immune response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Melatonin, the pineal gland hormone, provides entrainment of many circadian rhythms to the ambient light/dark cycle. Recently, cardiovascular studies have demostrated melatonin interactions with many physiological processes and diseases, such as hypertension and cardiopathologies. Although membrane melatonin receptors (MT1, MT2) and the transcriptional factor ROR alpha have been reported to be expressed in the heart, there is no evidence of the cell-type expressing receptors as well as the possible role of melatonin on the expression of the circadian clock of cardiomyocytes, which play an important role in cardiac metabolism and function. Therefore, the aim of this study was to evaluate the mRNA and protein expressions of MT1, MT2, and ROR alpha and to determine whether melatonin directly influences expression of circadian clocks within cultured rat cardiomyocytes. Adult rat cardiomyocyte cultures were created, and the cells were stimulated with 1 nM melatonin or vehicle. Gene expressions were assayed by real-time polymerase chain reaction (PCR). The mRNA and protein expressions of membrane melatonin receptors and RORa were established within adult rat cardiomyocytes. Two hours of melatonin stimulation did not alter the expression pattern of the analyzed genes. However, given at the proper time, melatonin kept Rev-erb alpha expression chronically high, specifically 12 h after melatonin treatment, avoiding the rhythmic decline of Rev-erb alpha mRNA. The blockage of MT1 and MT2 by luzindole did not alter the observed melatonin-induced expression of Rev-erb alpha mRNA, suggesting the nonparticipation of MT1 and MT2 on the melatonin effect within cardiomyocytes. It is possible to speculate that melatonin, in adult rat cardiomyocytes, may play an important role in the light signal transduction to peripheral organs, such as the heart, modulating its intrinsic rhythmicity. (Author correspondence: cipolla@icb.usp.br)