106 resultados para Electrochemistry.
Resumo:
The photocatalytic degradation of Janus Green B azo dye over silver modified titanium dioxide films was investigated by surface-enhanced Raman spectroscopy (SERS). An optimized SERS-active substrate was employed to study the photodegradation reaction of Janus Green B. Considering that photocatalytic degradation processes of organic molecules adsorbed on TiO2 might involve either their oxidation or reduction reaction, the vibrational spectroelectrochemical study of the dye was also performed, in order to clarify the transformations involved in initial steps of its photochemical decomposition. In order to understand the changes in Raman spectra of Janus Green B after photodegradation and/or electrochemical processes, a vibrational assignment of the main Raman active modes of the dye was carried out, based on a detailed resonance Raman profile. Products formed by electrochemical and photochemical degradation processes were compared. The obtained results revealed that the first steps of the degradation process of Janus Green B involve a reductive mechanism. (C) 2007 Published by Elsevier B.V.
Resumo:
Nickel hydroxide can provide an outstanding cathode material in alkaline secondary batteries, however the progressive decrease of the charge capacity as a function of the number of oxidation/reduction cycles is a challenging problem to be solved. New improvements on the electrochemical properties of electrode materials can be achieved by exploiting the much better performance of alpha-nickel hydroxide. Such materials were obtained in a stable form by sol-gel method and characterized by thermogravimetric analyses, UV-Vis spectroscopy, X-ray diffractometry, scanning and transmission electron microscopy, cyclic voltammetry and electrochemical quartz crystal microbalance techniques. The results revealed not only the formation of the alpha-Ni(OH)(2) phase, but also a much better electrochemical reversibility and stability as compared with similar materials obtained by electrochemical precipitation method.
Resumo:
Scanning electrochemical microscopy (SECM) in feedback mode was employed to characterise the reactivity and microscopic peculiarities of bismuth and bismuth/lead alloys plated onto gold disk substrates in 0.1 molL(-1) NaOH solutions. Methyl viologen was used as redox mediator, while a platinum microelectrode was employed as the SECM tip. The metal films were electrodeposited ex situ from NaOH solutions containing either bismuth ions only or both bismuth and lead ions. Approach curves and SECM images indicated that the metal films were conductive and locally reactive with oxygen to provide Bi(3+) and Pb(2+) ions. The occurrence of the latter chemical reactions was verified by local anodic stripping voltammetry (ASV) at the substrate solution interface by using a mercury-coated platinum SECM tip. The latter types of measurements allowed also verifying that lead was not uniformly distributed onto the bismuth film electrode substrate. These findings were confirmed by scanning electron microscopy images. The surface heterogeneity produced during the metal deposition process, however, did not affect the analytical performance of the bismuth coated gold electrode in anodic stripping voltammetry for the determination of lead in alkaline media, even in aerated aqueous solutions. Under the latter conditions, stripping peak currents proportional to lead concentration with a satisfactory reproducibility (within 5% RSD) were obtained.
Resumo:
This paper describes an automatic device for in situ and continuous monitoring of the ageing process occurring in natural and synthetic resins widely used in art and in the conservation and restoration of cultural artefacts. The results of tests carried out under accelerated ageing conditions are also presented. This easy-to-assemble palm-top device, essentially consists of oscillators based on quartz crystal resonators coated with films of the organic materials whose response to environmental stress is to be addressed. The device contains a microcontroller which selects at pre-defined time intervals the oscillators and records and stores their oscillation frequency. The ageing of the coatings, caused by the environmental stress and resulting in a shift in the oscillation frequency of the modified crystals, can be straightforwardly monitored in this way. The kinetics of this process reflects the level of risk damage associated with a specific microenvironment. In this case, natural and artificial resins, broadly employed in art and restoration of artistic and archaeological artefacts (dammar and Paraloid B72), were applied onto the crystals. The environmental stress was represented by visible and UV radiation, since the chosen materials are known to be photochemically active, to different extents. In the case of dammar, the results obtained are consistent with previous data obtained using a bench-top equipment by impedance analysis through discrete measurements and confirm that the ageing of this material is reflected in the gravimetric response of the modified quartz crystals. As for Paraloid B72, the outcome of the assays indicates that the resin is resistant to visible light, but is very sensitive to UV irradiation. The use of a continuous monitoring system, apart from being obviously more practical, is essential to identify short-term (i.e. reversible) events, like water vapour adsorption/desorption processes, and to highlight ageing trends or sudden changes of such trends. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Polycarbonate membranes (PCM) of various pores sizes (400, 200, 100 and 50 nm) were used as templates for gold deposition. The electrodeposition from gold ions resulted in the formation of gold nanotubes when large pores size PCMs (400 and 200 nm) were used. On the other hand, gold nanowires were predominant for the PCMs with smaller pores size (100 and 50 nm). Surface-enhanced Raman scattering (SERS) from the probe molecule 4-mercaptopyridine (4-MPy) was obtained from all these nanostructures. The SERS efficiency of the substrates produced using the PC M templates were compared to two commonly used SERS platforms: a roughened gold electrode and gold nanostructures electrodeposited through organized polystyrene spheres (PSS). The SERS signal of the probe molecule increased as the pore diameter of the PCM template decreased. Moreover, the SERS efficiency from the nanostructures produced using 50 nm PCM templates was four and two times better than the signal from the roughened gold electrode and the PSS template, respectively. The SERS substrates prepared using PCM templates were more homogenous over a larger area (ca. 1 cm(2)), presented better spatial and sample to sample reproducibility than the other substrates. These results show that SERS substrates prepared using PCM templates are promising for the fabrication of planar SERS platforms for analytical/bioanalytical applications.
Resumo:
The ethanol oxidation reaction (EOR) was investigated using PtSnCe/C electrocatalysts in different mass ratios (72:23:5, 68:22:10 and 64:21:15) that were prepared by the polymeric precursor method. Transmission electron microscopy (TEM) showed that the particles ranged in size from approximately 2 to 5 nm. Changes in the net parameters observed for Pt suggest the incorporation of Sn and Ce into the Pt crystalline network with the formation of an alloy between Pt, Sn and/or Ce. Among the PtSnCe catalysts investigated, the 68:22:10 composition showed the highest activity toward ethanol oxidation, and the current time curves obtained in the presence of ethanol in acidic media showed a current density 50% higher than that observed for commercial PtSn/C (E-Tek). During the experiments performed on single direct ethanol fuel cells, the power density for the PtSnCe/C 68:22:10 anode was nearly 40% higher than the one obtained using the commercial catalyst. Data from Fourier transform infrared (FTIR) spectroscopy showed that the observed behavior for ethanol oxidation may be explained in terms of a double mechanism. The presence of Sn and Ce seems to favor CO oxidation, since they produce an oxygen-containing species to oxidize acetaldehyde to acetic acid. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Although Pt has been thoroughly studied regarding its activity for the borohydride oxidation reaction (BOR), the BOR mechanism at Pt remains unclear: Depending on the applied potential, spontaneous BH(4)(-) hydrolysis can compete with the direct BOR. The goal of the present work is to provide more insight into the behavior of smooth Pt electrodes toward the BOR, by coupling in situ infrared reflectance spectroscopy with electrochemistry. The measurements were performed on a Pt electrode in 1 M NaOH/1 M NaBH(4), so as to detect the reaction intermediate species generated as a function of the applied potential. Several bands were monitored in the B-H ((v) over bar approximate to 1180, 1080, and 972 cm(-1)) and B-O ((v) over bar = 1325 and similar to 1425 cm(-1)) bond regions upon increased electrode polarization. These absorption bands, which appear sequentially and were already detected for similar measurements on Au electrodes, are assigned to BH(3), BH(2), and BO(2)(-) species. In light of these experimental data and previous results obtained in our group for Pt- or Au-based electrodes, possible initial elementary steps of the BOR on platinum electrodes are proposed and discussed according to the relevant literature data.
Resumo:
PtSn/CeO(2)-C electrocatalyst was prepared in a single step by an alcohol-reduction process using ethylene glycol as solvent and reducing agent and CeO(2) (15 wt%) and Vulcan XC72 (85 wt%) as supports. The performance for ethanol oxidation was investigated by cyclic voltammetry and in situ FTIR spectroscopy. The electrocatalytic activity of the PtSn/CeO(2)-C electrocatalyst was higher than that of the PtSn/C electrocatalyst. FTIR studies for ethanol oxidation on PtSn/C electrocatalyst showed that acetaldehyde and acetic acid were the principal products formed, while on PtSn/CeO(2)-C electrocatalyst the principal products formed were CO(2) and acetic acid.
Resumo:
The oxygen reduction reaction (ORR) was investigated on carbon-supported Pt-Co nanoparticle electrocatalysts with low Pt content in alkaline electrolyte. High resolution transmission electron microscopy, In situ X-ray absorption spectroscopy, and X-ray diffraction analysis evidenced large structural differences of the Pt-Co particles depending oil the route of the catalyst synthesis. It was demonstrated that although the Pt-Co materials contain low amounts of Pt, they show very good activities when the particles are formed by a Pt-rich shell and a Pt-Co core, which was obtained after submitting the electrocatalyst to a potential cycling in acid electrolyte. The high activity of this material was due to a major contribution from its higher surface area, as a result of the leaching of the Co atoms from the particle Surface. Furthermore, its high activity was ascribed to a minor contribution from the electronic interaction of the Pt atoms, at the particle surface, and the Co atoms located in the beneath layer, lowering the Pt cl-band center. As these electrocatalysts presented high activity for the ORR with low Pt content, the cost of the fuel cell cathodes could be lowered considerably. (c) 2009 Elsevier B.V. All rights reserved.
Hydrogen production by steam reforming of ethanol over Ni-based catalysts promoted with noble metals
Resumo:
The catalytic activity of Ni/La(2)O(3)-Al(2)O(3) Catalysts modified with noble metals(Pt and Pd) was investigated in the steam reforming of ethanol. The catalysts were characterized by ICP, S(BFT), X-ray diffraction, temperature-programmed reduction, UV-vis diffuse reflectance spectroscopy and X-ray absorption fine structure (XANES). The results showed that the formation of inactive nickel aluminate was prevented by the presence of La(2)O(3) dispersed on the alumina. The promoting effect of noble metals included a marked decrease in the reduction temperatures of NiO species interacting with the support. due to the hydrogen spillover effect, facilitating greatly the reduction of the promoted catalysts. it was seen that the addition of noble metal stabilized the Ni sites in the reduced state throughout the reaction, increasing ethanol conversion and decreasing coke formation, irrespective of the nature or loading of the noble metal. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the presented work, the evaluation of the influence of acetic acid in the electrochemical environment on the ethanol electro-oxidation reaction on a polycrystalline platinum electrode is presented for the first time. Using cyclic voltammetry. chronoamperometry and in situ Fourier Transformed IR spectroscopy (FTIR) it was demonstrated that an inhibition of the ethanol oxidation reaction occurs for bulk acetic acid concentrations of the order 0.1 mu mol L(-1) -5 mmol L(-1). This inhibition effect is related to the decrease of CO(2) and acetaldehyde production as confirmed by spectroscopic results. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical detection of the hazardous pollutant 4-nitrophenol (4-NP) at low potentials, in order to avoid matrix interferences, is an important research challenge. This study describes the development, electrochemical characterization and utilization of a multiwall carbon nanotube (MWCNT) film electrode for the quantitative determination of 4-NP in natural water. Electrochemical impedence spectroscopy measurements showed that the modified surface exhibits a decrease of ca. 13 times in the charge transfer resistance when compared with a bare glassy carbon (GC) surface. Voltammetric experiments showed the possibility to oxidize a hydroxylamine layer (produced by the electrochemical reduction of 4-NP on the GC/MWNCT surface) in a potential region which is approximately 700 mV less positive than that needed to oxidize 4-NP, thus minimizing the interference of matrix components. The limit of detection for 4-NP obtained using square-wave voltammetry (0.12 mu mol L(-1)) was lower than the value advised by EPA. A natural water sample from a dam located in Sao Carlos (Brazil) was spiked with 4-NP and analyzed by the standard addition method using thee GC/MWCNT electrode, without any further purification step. the recovery procedure yielded a value of 96.5% for such sample, thus confirming the suitability of the developed method to determine 4-NP in natural water samples. The electrochemical determination was compared with that obtained by HPLC with UV-vis detection.
Resumo:
The electrocatalysis of CO tolerance of Pt/C, PtRu/C, PtFe/C, PtMo/C, and PtW/C at a PEM fuel cell anode has been investigated using single cell polarization and online electrochemical mass spectrometry (EMS) measurements, and cyclic voltammetry, X-ray diffraction (XRD), in situ X-ray absorption near edge structure (XANES) analyses of the electrocatalysts. For all bimetallic electrocatalysts, which presented higher CO tolerance, EMS results have shown that the production of CO(2) start at lower hydrogen electrode overpotentials as compared to Pt/C, confirming the occurrence of the so-called bifunctional mechanism. On the other hand, XANES results indicate an increase in the Pt 5d-band vacancies for the bimetallic catalysts, particulary for PtFe/C, this leading to a weakening of the Pt-CO bond, helping to increase the CO tolerance (the so-called electronic effect). For PtMo/C and PtRu/C supplied with H(2)/CO, the formation of CO(2) is observed even when the cell is at open circuit, confirming some elimination of CO by a chemical process, most probably the water gas shift reaction. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Nitrate reduction on palladium multilayers deposited on platinum single crystal electrodes was studied by cyclic voltammetry and FTIR spectroscopy in acid and alkaline media. The results are compared with those obtained with bulk palladium single crystals. The reaction is sensitive to the electrode surface structure, the reactivity depending on the solution pH. In acid solution nitrate was reduced at potentials below the potential of zero total charge (pztc), when the electrode is negatively charged. Competition between nitrate, hydrogen and anion adsorption and NO formation and accumulation at the surface are proposed as the main reasons for the slow reaction rate. On the bulk palladium single crystal electrodes, NO formation leads to a fast blockage of the surface resulting in a very low activity for nitrate reduction. In alkaline solution, nitrate is reduced at more positive potentials with significantly higher current being measured on the Pd multilayer on Pt(100) electrode. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A new electrochemical methodology has been developed for the detection of ozone using multiwalled carbon nanotubes (MWCNT). The method presented here is based on the reaction of ozone with indigo blue dye producing anthranilic acid (ATN). The electrochemical profile of ATN on an electrode of glassy carbon (GC) modified with MWCNT showed an oxidation peak potential at 750 mV vs. Ag/AgCl. An analytical method was developed using differential pulse voltammetry (DPV) to determine ATN in a range of 50-400 nmol L(-1), with a detection limit of 9.7 nmol L(-1). Ozonated water samples were successfully analyzed by GC/MWCNT electrode and the recovery procedure yielded values between of 96.5 and 102.3%.