267 resultados para Differential Permeation Method
Resumo:
In this paper we discuss the existence of solutions for a class of abstract partial neutral functional differential equations.
Resumo:
Background: The beneficial actions of exercise training on lipid, glucose and energy metabolism and insulin sensitivity appear to be in part mediated by PGC-1 alpha. Previous studies have shown that spontaneously exercised rats show at rest enhanced responsiveness to exogenous insulin, lower plasma insulin levels and increased skeletal muscle insulin sensitivity. This study was initiated to examine the functional interaction between exercise-induced modulation of skeletal muscle and liver PGC-1 alpha protein expression, whole body insulin sensitivity, and circulating FFA levels as a measure of whole body fatty acid (lipid) metabolism. Methods: Two groups of male Wistar rats (2 Mo of age, 188.82 +/- 2.77 g BW) were used in this study. One group consisted of control rats placed in standard laboratory cages. Exercising rats were housed individually in cages equipped with running wheels and allowed to run at their own pace for 5 weeks. At the end of exercise training, insulin sensitivity was evaluated by comparing steady-state plasma glucose (SSPG) concentrations at constant plasma insulin levels attained during the continuous infusion of glucose and insulin to each experimental group. Subsequently, soleus and plantaris muscle and liver samples were collected and quantified for PGC-1 alpha protein expression by Western blotting. Collected blood samples were analyzed for glucose, insulin and FFA concentrations. Results: Rats housed in the exercise wheel cages demonstrated almost linear increases in running activity with advancing time reaching to maximum value around 4 weeks. On an average, the rats ran a mean (Mean +/- SE) of 4.102 +/- 0.747 km/day and consumed significantly more food as compared to sedentary controls (P < 0.001) in order to meet their increased caloric requirement. Mean plasma insulin (P < 0.001) and FFA (P < 0.006) concentrations were lower in the exercise-trained rats as compared to sedentary controls. Mean steady state plasma insulin (SSPI) and glucose (SSPG) concentrations were not significantly different in sedentary control rats as compared to exercise-trained animals. Plantaris PGC-1 alpha protein expression increased significantly from a 1.11 +/- 0.12 in the sedentary rats to 1.74 +/- 0.09 in exercising rats (P < 0.001). However, exercise had no effect on PGC-1 alpha protein content in either soleus muscle or liver tissue. These results indicate that exercise training selectively up regulates the PGC-1 alpha protein expression in high-oxidative fast skeletal muscle type such as plantaris muscle. Conclusion: These data suggest that PGC-1 alpha most likely plays a restricted role in exercise-mediated improvements in insulin resistance (sensitivity) and lowering of circulating FFA levels.
Resumo:
The strategy used to treat HCV infection depends on the genotype involved. An accurate and reliable genotyping method is therefore of paramount importance. We describe here, for the first time, the use of a liquid microarray for HCV genotyping. This liquid microarray is based on the 5'UTR - the most highly conserved region of HCV - and the variable region NS5B sequence. The simultaneous genotyping of two regions can be used to confirm findings and should detect inter-genotypic recombination. Plasma samples from 78 patients infected with viruses with genotypes and subtypes determined in the Versant (TM) HCV Genotype Assay LiPA (version I; Siemens Medical Solutions, Diagnostics Division, Fernwald, Germany) were tested with our new liquid microarray method. This method successfully determined the genotypes of 74 of the 78 samples previously genotyped in the Versant (TM) HCV Genotype Assay LiPA (74/78, 95%). The concordance between the two methods was 100% for genotype determination (74/74). At the subtype level, all 3a and 2b samples gave identical results with both methods (17/17 and 7/7, respectively). Two 2c samples were correctly identified by microarray, but could only be determined to the genotype level with the Versant (TM) HCV assay. Genotype ""1'' subtypes (1a and 1b) were correctly identified by the Versant (TM) HCV assay and the microarray in 68% and 40% of cases, respectively. No genotype discordance was found for any sample. HCV was successfully genotyped with both methods, and this is of prime importance for treatment planning. Liquid microarray assays may therefore be added to the list of methods suitable for HCV genotyping. It provides comparable results and may readily be adapted for the detection of other viruses frequently co-infecting HCV patients. Liquid array technology is thus a reliable and promising platform for HCV genotyping.
Resumo:
AIM: To compare the histologic features of the liver in intrahepatic neonatal cholestasis (IHNC) with infectious, genetic-endocrine-metabolic, and idiopathic etiologies. METHODS: Liver biopsies from 86 infants with IHNC were evaluated. The inclusion criteria consisted of jaundice beginning at 3 mo of age and a hepatic biopsy during the 1st year of life. The following histologic features were evaluated: cholestasis, eosinophilia, giant cells, erythropoiesis, siderosis, portal fibrosis, and the presence of a septum. RESULTS: Based on the diagnosis, patients were classified into three groups: group 1 (infectious; n = 18), group 2 (genetic-endocrine-metabolic; n = 18), and group 3 (idiopathic; n = 50). There were no significant differences with respect to the following variables: cholestasis, eosinophilia, giant cells, siderosis, portal fibrosis, and presence of a septum. A significant difference was observed with respect to erythropoiesis, which was more severe in group 1 (Fisher's exact test, P = 0.016). CONCLUSION: A significant difference was observed in IHNC of infectious etiology, in which erythropoiesis was more severe than that in genetic-endocrine-metabolic and idiopathic etiologies, whereas there were no significant differences among cholestasis, eosinophilia, giant cells, siderosis, portal fibrosis, and the presence of a septum. (C) 2009 The WIG Press and Baishideng. All rights reserved.
Resumo:
The mating sign that each drone leaves when mating with a queen essentially consists of mucus gland proteins. We employed a Representational Difference Analysis (RDA) methodology to identify genes that are differentially expressed in mucus glands during sexual maturation of drones. The RDA library for mucus glands of newly emerged drones was more complex than that of 8 day-old drones, with matches to 20 predicted genes. Another 26 reads matched to the Apis genome but not to any predicted gene. Since these ESTs were located within ORFs they may represent novel honey bee genes, possibly fast evolving mucus gland proteins. In the RDA library for mucus glands of 8 day-old drones, most reads corresponded to a capsid protein of deformed wing virus, indicating high viral loads in these glands. The expression of two genes encoding venom allergens, acid phosphatase-1 and hyaluronidase, in drone mucus glands argues for their homology with the female venom glands, both associated with the reproductive system.
Resumo:
The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.
Resumo:
Background: Glioblastoma is the most lethal primary malignant brain tumor. Although considerable progress has been made in the treatment of this aggressive tumor, the clinical outcome for patients remains poor. Histone deacetylases (HDACs) are recognized as promising targets for cancer treatment. In the past several years, HDAC inhibitors (HDACis) have been used as radiosensitizers in glioblastoma treatment. However, no study has demonstrated the status of global HDAC expression in gliomas and its possible correlation to the use of HDACis. The purpose of this study was to evaluate and compare mRNA and protein levels of class I, II and IV of HDACs in low grade and high grade astrocytomas and normal brain tissue and to correlate the findings with the malignancy in astrocytomas. Methods: Forty-three microdissected patient tumor samples were evaluated. The histopathologic diagnoses were 20 low-grade gliomas (13 grade I and 7 grade II) and 23 high-grade gliomas (5 grade III and 18 glioblastomas). Eleven normal cerebral tissue samples were also analyzed (54 total samples analyzed). mRNA expression of class I, II, and IV HDACs was studied by quantitative real-time polymerase chain reaction and normalized to the housekeeping gene beta-glucuronidase. Protein levels were evaluated by western blotting. Results: We found that mRNA levels of class II and IV HDACs were downregulated in glioblastomas compared to low-grade astrocytomas and normal brain tissue (7 in 8 genes, p < 0.05). The protein levels of class II HDAC9 were also lower in high-grade astrocytomas than in low-grade astrocytomas and normal brain tissue. Additionally, we found that histone H3 (but not histone H4) was more acetylated in glioblastomas than normal brain tissue. Conclusion: Our study establishes a negative correlation between HDAC gene expression and the glioma grade suggesting that class II and IV HDACs might play an important role in glioma malignancy. Evaluation of histone acetylation levels showed that histone H3 is more acetylated in glioblastomas than normal brain tissue confirming the downregulation of HDAC mRNA in glioblastomas.
Resumo:
Background: MicroRNAs (miRNAs) are short non-coding RNAs that inhibit translation of target genes by binding to their mRNAs. The expression of numerous brain-specific miRNAs with a high degree of temporal and spatial specificity suggests that miRNAs play an important role in gene regulation in health and disease. Here we investigate the time course gene expression profile of miR-1, -16, and -206 in mouse dorsal root ganglion (DRG), and spinal cord dorsal horn under inflammatory and neuropathic pain conditions as well as following acute noxious stimulation. Results: Quantitative real-time polymerase chain reaction analyses showed that the mature form of miR-1, -16 and -206, is expressed in DRG and the dorsal horn of the spinal cord. Moreover, CFA-induced inflammation significantly reduced miRs-1 and -16 expression in DRG whereas miR-206 was downregulated in a time dependent manner. Conversely, in the spinal dorsal horn all three miRNAs monitored were upregulated. After sciatic nerve partial ligation, miR-1 and -206 were downregulated in DRG with no change in the spinal dorsal horn. On the other hand, axotomy increases the relative expression of miR-1, -16, and 206 in a time-dependent fashion while in the dorsal horn there was a significant downregulation of miR-1. Acute noxious stimulation with capsaicin also increased the expression of miR-1 and -16 in DRG cells but, on the other hand, in the spinal dorsal horn only a high dose of capsaicin was able to downregulate miR-206 expression. Conclusions: Our results indicate that miRNAs may participate in the regulatory mechanisms of genes associated with the pathophysiology of chronic pain as well as the nociceptive processing following acute noxious stimulation. We found substantial evidence that miRNAs are differentially regulated in DRG and the dorsal horn of the spinal cord under different pain states. Therefore, miRNA expression in the nociceptive system shows not only temporal and spatial specificity but is also stimulus-dependent.
Resumo:
Objectives: To evaluate the intratumoral reliability of color Doppler parameters and the contribution of Doppler sonography to the gray-scale differential diagnosis of ovarian masses. Methods: An observational study was performed including 67 patients, 15 (22.4%) with malignant ovarian neoplasm and 52 (77.6%) with benign ovarian diseases. We performed the Doppler evaluation in two distinct vessels selected after decreasing the Doppler gain to sample only vessels with higher velocity flow. Doppler measurements were obtained from each identified vessel, and resistive index (RI), pulsatility index (PI), peak systolic velocity (PSV), and end-diastolic velocity (EDV) were measured. Intraclass coefficient of correlation (ICC), sensitivity, specificity, and potential improvement in gray-scale ultrasound performance were calculated. Results: The general ICC were 0.60 (95% CI 0.42- 0.73) for RI, 0.65 (95% CI 0.49- 0.77) for PI, 0.07 (95% CI- 0.17-0.30) for PSV, and 0.19 (95% CI -0.05-0.41) for EDV. The sensitivity and specificity were respectively 84.6% and 86.7% for RI, 69.2% and 93.3% for PI, 80.0% and 65.4% for gray-scale sonography, and 93.3% and 65.4% for gray-scale plus RI (p = 0.013). Conclusions: Gynecologists must be careful in interpreting results from Doppler evaluation of ovarian masses because PSV and EDV present poor intratumoral reliability. The lower RI value, evaluated in at least two distinct sites of the tumor, was able to improve the performance of gray-scale ultrasound in differential diagnosis of ovarian masses.
Resumo:
Cadherins are cell-to-cell adhesion molecules that play an important role in the establishment of adherent-type junctions by mediating calcium-dependent cellular interactions. The CDH1 gene encodes the transmembrane glycoprotein E-cadherin which is important in maintaining homophilic cell-cell adhesion in epithelial tissues. E-cadherin interacts with catenin proteins to maintain tissue architecture. Structural defects or loss of expression of E-cadherin have been reported as a common feature in several human cancer types. This study aimed to evaluate the expression of E-cadherin and their correlation with clinical features in microdissected brain tumor samples from 81 patients, divided into 62 astrocytic tumors grades I to IV and 19 medulloblastomas, and from 5 white matter non-neoplasic brain tissue samples. E-cadherin (CDH1) gene expression was analyzed by quantitative real-time polymerase chain reaction. Mann-Whitney, Kruskal-Wallis, Kaplan-Meir, and log-rank tests were performed for statistical analyses. We observed a decrease in expression among pathological grades of neuroepithelial tumors. Non-neoplasic brain tissue showed a higher expression level of CDH1 gene than did neuroepithelial tumors. Expression of E-cadherin gene was higher in astrocytic than embryonal tumors (P = 0.0168). Low-grade malignancy astrocytomas (grades I-II) showed higher CDH1 expression than did high-grade malignancy astrocytomas (grades III-IV) and medulloblastomas (P < 0.0001). Non-neoplasic brain tissue showed a higher expression level of CDH1 gene than grade I malignancy astrocytomas, considered as benign tumors (P = 0.0473). These results suggest that a decrease in E-cadherin gene expression level in high-grade neuroepithelial tumors may be a hallmark of malignancy in dedifferentiated tumors and that it may be possibly correlated with their progression and dissemination.
Resumo:
Background Minimal residual disease is an important independent prognostic factor in childhood acute lymphoblastic leukemia. The classical detection methods such as multiparameter flow cytometry and real-time quantitative polymerase chain reaction analysis are expensive, time-consuming and complex, and require considerable technical expertise. Design and Methods We analyzed 229 consecutive children with acute lymphoblastic leukemia treated according to the GBTLI-99 protocol at three different Brazilian centers. Minimal residual disease was analyzed in bone marrow samples at diagnosis and on days 14 and 28 by conventional homo/heteroduplex polymerase chain reaction using a simplified approach with consensus primers for IG and TCR gene rearrangements. Results At least one marker was detected by polymerase chain reaction in 96.4%, of the patients. By combining the minimal residual disease results obtained on days 14 and 28, three different prognostic groups were identified: minimal residual disease negative on days 14 and 28, positive on day 14/negative on day 28, and positive on both. Five-year event-free survival rates were 85%, 75.6%,, and 27.8%, respectively (p<0.0001). The same pattern of stratification held true for the group of intensively treated children. When analyzed in other subgroups of patients such as those at standard and high risk at diagnosis, those with positive B-derived CD10, patients positive for the TEL/AML1 transcript, and patients in morphological remission on a day 28 marrow, the event-free survival rate was found to be significantly lower in patients with positive minimal residual disease on day 28. Multivariate analysis demonstrated that the detection of minimal residual disease on day 28 is the most significant prognostic factor. Conclusions This simplified strategy for detection of minimal residual disease was feasible, reproducible, cheaper and simpler when compared with other methods, and allowed powerful discrimination between children with acute lymphoblastic leukemia with a good and poor outcome.
Resumo:
Background: Cancer stem cell (CSC) hypothesis postulates that tumors are maintained by a self-renewing CSC population that is also capable of differentiating into non-self-renewing cell populations that constitute the bulk of tumor. Stem cells renewal and differentiation can be directly influenced by the oxygen levels of determined tissues, probably by the reduction of oxidative DNA damage in hypoxic regions, thus leading to a friendlier microenvironment, regarding to clonal expansion and for resistance to chemotherapeutic regimens. Furthermore, there have been strong data indicating a pivotal role of hypoxic niche in cancer stem cells development. There are evidence that hypoxia could drive the maintenance of CSC, via HIF-1 alpha expression, but it still to be determined whether hypoxia markers are expressed in breast tumors presenting CD44(+)CD24(-/low) immunophenotype. Methods: Immunohistochemical analysis of CD44(+)CD24(-/low) expression and its relationship with hypoxia markers and clinical outcome were evaluated in 253 samples of breast ductal carcinomas. Double-immunolabeling was performed using EnVision Doublestain System (Dako, Carpinteria, CA, USA). Slides were then scanned into high-resolution images using Aperio ScanScope XT and then, visualized in the software Image Scope (Aperio, Vista, CA, USA). Results: In univariate analysis, CD44(+)CD24(-/low) expression showed association with death due to breast cancer (p = 0.035). Breast tumors expressing CD44(+)CD24(-/low) immunophenotype showed relationship with HIF-1 alpha (p = 0.039) and negativity for HER-2 (p = 0.013). Conclusion: Considering that there are strong evidences that the fraction of a tumour considered to be cancer stem cells is plastic depending upon microenvironmental signals, our findings provide further evidence that hypoxia might be related to the worse prognosis found in CD44(+)CD24(-/low) positive breast tumors.
Resumo:
Background: Melatonin is associated with direct or indirect actions upon female reproductive function. However, its effects on sex hormones and steroid receptors during ovulation are not clearly defined. This study aimed to verify whether exposure to long-term melatonin is able to cause reproductive hormonal disturbances as well as their role on sex steroid receptors in the rat ovary, oviduct and uterus during ovulation. Methods: Twenty-four adult Wistar rats, 60 days old (+/-250 g) were randomly divided into two groups. Control group (Co): received 0.9% NaCl 0.3 mL + 95% ethanol 0.04 mL as vehicle; Melatonin-treated group (MEL): received vehicle + melatonin [ 100 mu g/100 g BW/day] both intraperitoneally during 60 days. All animals were euthanized by decapitation during the morning estrus at 4 a. m. Results: Melatonin significantly reduced the plasma levels of LH and 17 beta-estradiol, while urinary 6-sulfatoximelatonin (STM) was increased at the morning estrus. In addition, melatonin promoted differential regulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR) and melatonin receptor (MTR) along the reproductive tissues. In ovary, melatonin induced a down-regulation of ER-alpha and PRB levels. Conversely, it was observed that PRA and MT1R were up-regulated. In oviduct, AR and ER-alpha levels were down-regulated, in contrast to high expression of both PRA and PRB. Finally, the ER-beta and PRB levels were down-regulated in uterus tissue and only MT1R was up-regulated. Conclusions: We suggest that melatonin partially suppress the hypothalamus-pituitary-ovarian axis, in addition, it induces differential regulation of sex steroid receptors in the ovary, oviduct and uterus during ovulation.
Resumo:
Based on high-resolution spectra obtained with the MIKE spectrograph on the Magellan telescopes, we present detailed elemental abundances for 20 red giant stars in the outer Galactic disk, located at Galactocentric distances between 9 and 13 kpc. The outer disk sample is complemented with samples of red giants from the inner Galactic disk and the solar neighborhood, analyzed using identical methods. For Galactocentric distances beyond 10 kpc, we only find chemical patterns associated with the local thin disk, even for stars far above the Galactic plane. Our results show that the relative densities of the thick and thin disks are dramatically different from the solar neighborhood, and we therefore suggest that the radial scale length of the thick disk is much shorter than that of the thin disk. We make a first estimate of the thick disk scale length of L(thick) = 2.0 kpc, assuming L(thin) = 3.8 kpc for the thin disk. We suggest that radial migration may explain the lack of radial age, metallicity, and abundance gradients in the thick disk, possibly also explaining the link between the thick disk and the metal-poor bulge.
Resumo:
Aims. In this work, we describe the pipeline for the fast supervised classification of light curves observed by the CoRoT exoplanet CCDs. We present the classification results obtained for the first four measured fields, which represent a one-year in-orbit operation. Methods. The basis of the adopted supervised classification methodology has been described in detail in a previous paper, as is its application to the OGLE database. Here, we present the modifications of the algorithms and of the training set to optimize the performance when applied to the CoRoT data. Results. Classification results are presented for the observed fields IRa01, SRc01, LRc01, and LRa01 of the CoRoT mission. Statistics on the number of variables and the number of objects per class are given and typical light curves of high-probability candidates are shown. We also report on new stellar variability types discovered in the CoRoT data. The full classification results are publicly available.