51 resultados para Cyclin regulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of 5-HT2C receptors in limbic structures such as the amygdala and hippocampus increases anxiety. Indirect evidence obtained with non-selective 5-HT2C-interacting drugs suggests that the same may occur in the dPAG, a brainstem region consistently implicated in the genesis/regulation of panic attacks. In this study we used more selective agonists and antagonists to unveil the role played by dPAG 5-HT2C receptors in the regulation of anxiety- and panic-related defensive behaviors. Our results showed that intra-dPAG microinjection of the endogenous agonist 5-HT (20 nmol) or the 5-HT2C receptor agonists MK-212 (1 and 10 nmol) and RO-600175 (40 nmol) significantly increased inhibitory avoidance acquisition in rats tested in the elevated T-maze, suggesting an anxiogenic effect. 5-HT, but not the two 5-HT2C receptor agonists, inhibited escape performance. In the elevated T-maze, inhibitory avoidance and escape responses have been related to generalized anxiety and panic attacks, respectively. The behavioral effects caused by 5-HT and MK-212 were fully blocked by previous local microinjection of the 5-HT2C receptor antagonist SB-242084. Intra-dPAG injection of MK-212 also failed to affect escape expression in another test relating this behavior to panic, the electrical stimulation of the dPAG. Overall, the results indicate that 5-HT2C receptors in the dPAG are preferentially involved in the regulation of defensive behaviors related to anxiety, but not panic. This finding extends to the dPAG the prominent role that has been attributed to 5-HT2C receptors in anxiety generation. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac mast cells (MC) are apposed to capillaries within the heart and release renin and proteases capable of metabolizing angiotensins (Ang). Therefore, we hypothesized that mast cell degranulation could alter the rat coronary vascular responsiveness to the arterial delivered Ang I and Ang II, taking into account carboxypeptidase and chymase-1 activities. Hearts from animals that were either pretreated or not with systemic injection of the secretagogue compound 48/80 were isolated and mounted on a Langendorff apparatus to investigate coronary reactivity. The proteolytic activity of the cardiac perfusate from isolated hearts, pretreated or not with the secretagogue, toward Ang I and tetradecapeptide renin substrate was analyzed by HPLC. Coronary vascular reactivity to peptides was not affected by compound 48/80 pretreatment, despite the extensive amount of cardiac MC degranulation. Cardiac MC activation did not modify the generation of both Ang II and Ang 5-10 from Ang I by cardiac perfusate, activities that could be ascribed to MC carboxypeptidase and chymase-1, respectively. An aliskiren-resistant Ang I-forming activity was increased in perfusates from secretagogue-treated hearts. Thus, cardiac MC proteases capable of metabolizing angiotensins do not affect rat coronary reactivity to arterial delivered Ang I and II. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continuum of folliculogenesis begins in the fetal ovary with the differentiation of the oogonia and their isolation within the primordial follicles. Primordial follicle activation is an enigmatic process, whereby some follicles enter the growing pool to become primary follicles, thereby embarking on an irreversible progression towards ovulation or atresia. This process is under the coordinated regulation of factors from the oocyte itself, as well as from the somatic cells of the ovary, in particular the theca and granulosa cells, which are structural components of the follicle. These two influences provide the principal stimuli for the growth of the follicle to the late preantral or early antral stage of development. The endocrine effects of the gonadotrophins FSH and LH are essential to the continued progression of the follicle and most atresia can be attributed to the failure to receive or process the gonadotrophin signals. The peri-ovulatory state has received intensive investigation recently, demonstrating a coordinated role for gonadotrophins, steroids, epidermal growth factor family proteins and prostaglandins. Thus, a complex programme of coordinated interaction of governing elements from both germ and somatic cell sources is required for successful follicle development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Galectin-3 has been implicated in tumor progression of some malignancies as thyroid, prostate, and salivary gland tumors. Recently, it has been suggested that this protein may be an important mediator of the beta-catenin/Wnt pathway. Moreover, nuclear galectin-3 expression has been implicated in cell proliferation, promoting cyclin D1 activation. Thus, the present study aimed to correlate galectin-3 expression with beta-catenin and cyclin D1 expressions in adenoid cystic carcinoma (ACC) and in polymorphous low-grade adenocarcinoma (PLGA). Methods: Fifteen formalin-fixed paraffin-embedded cases of each tumor were retrieved from the files of the Surgical Oral Pathology Service at the University of Sao Paulo and the proteins were analyzed by immunohistochemistry. Results: Adenoid cystic carcinoma showed galectin-3 immunostaining mainly in the nuclei, while PLGA revealed a positive mostly cytoplasmic reaction to galectin-3 in the largest part of tumor cells. Both tumors showed intense cytoplasmic/nuclear staining for beta-catenin in majority of cases. Cyclin D1 immunoreactivity was not detected in 14/15 PLGA and showed specific nuclear staining in 10/15 cases of ACC in more than 5% of the neoplastic cells. Cyclin D1 expression was correlated with cytoplasmic and nuclear galectin-3 expression in ACC (P < 0.05). Conclusions: These results suggest that in ACC galectin-3 may play a role in cellular proliferation through cyclin D1 activation. In addition, nuclear expression of galectin-3 in ACC may be related to a more aggressive behavior of this lesion. Although beta-catenin seems to play a role in carcinogenesis in both lesions, it seems that it does not bind to galectin-3 for cyclin D1 stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosoma cruzi infection causes intense myocarditis, leading to cardiomyopathy and severe cardiac dysfunction. Protective adaptive immunity depends on balanced signaling through a T cell receptor and coreceptors expressed on the T cell surface. Such coreceptors can trigger stimulatory or inhibitory signals after binding to their ligands in antigen-presenting cells (APC). T. cruzi modulates the expression of coreceptors in lymphocytes after infection. Deregulated inflammation may be due to unbalanced expression of these molecules. Programmed death cell receptor 1 (PD-1) is a negative T cell coreceptor that has been associated with T cell anergy or exhaustion and persistent intracellular infections. We aimed to study the role of PD-1 during T. cruzi-induced acute myocarditis in mice. Cytometry assays showed that PD-1 and its ligands are strongly upregulated in lymphocytes and APC in response to T. cruzi infection in vivo and in vitro. Lymphocytes infiltrating the myocardium exhibited high levels of expression of these molecules. An increased cardiac inflammatory response was found in mice treated with blocking antibodies against PD-1, PD-L1, and to a lesser extent, PD-L2, compared to that found in mice treated with rat IgG. Similar results in PD-1(-/-) mice were obtained. Moreover, the PD-1 blockade/deficiency led to reduced parasitemia and tissue parasitism but increased mortality. These results suggest the participation of a PD-1 signaling pathway in the control of acute myocarditis induced by T. cruzi and provide additional insight into the regulatory mechanisms in the pathogenesis of Chagas` disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous study, we concluded that overproduction of nitric oxide (NO) by inducible nitric Oxide synthase (iNOS) in the late phase of sepsis prevents hypothalamic activation, blunts vasopressin secretion and contributes to hypotension, irreversible shock and death. The aim of this follow-up study was to evaluate if the same neuronal activation pattern happens in brain structures related to cardiovascular functions. Male Wistar rats received intraperitoneal injections of aminoguanidine, an iNOS inhibitor, or saline 30 min before cecal ligation and puncture (CLP) or sham surgeries. The animals were perfused 6 or 24 h after the surgeries and the brains were removed and processed for Fos immunocytochemistry We observed an increase (P < 0.001) in c-fos expression 6 h after CLP in the area postrema (AP), nucleus of he tractus solitarius (NTS), ventral lateral medulla (VLM), locus coeruleus (LC) and parabrachial nucleus (PB). At 24 h after CLP, however, c-fos expression was strongly decreased in all these nuclei (P < 0.05), except for the VLM. Aminoguanidine reduced c-fos expression in the AP and NTS at 6 h after CLR but showed an opposite effect at 24 h, with an increase in the AP, NTS, and also in the VLM. No such effect was observed in the LC and PB at 6 or 24 h. In all control animals, c-fos expression was minimal or absent. We conclude that in the early phase of sepsis iNOS-derived NO may be partially responsible for the activation of brain structures related to cardiovascular regulation. During the late phase, however, this activation is reduced or abolished. (C) 2009 Elsevier Ireland Ltd. All rights reserved.