60 resultados para Cooling ponds
Resumo:
The abrasive wear resistance of white cast iron was studied. The iron was solidified using two solidification rates of 1.5 and 15 degrees C/s. Mass loss was evaluated with tests of the type pin on abrasive disc using alumina of different sizes. Two matrices were tested: one predominantly austenitic and the other predominantly martensitic, containing M(3)C carbides. Samples with cooling rate of 15 degrees C/s showed higher hardness and more refined microstructure compared with those solidified at 1.5 degrees C/s. During the test, the movement of successive abrasives gave rise to the strain hardening of the austenite phase, leading to the attainment of similar levels of surface hardness, which explains why the wear rate showed no difference compared to the austenite samples with different solidification rates. For the austenitic matrix the wear rate seems to depend on the hardness of the worn surface and not on the hardness of the material without deformation. The austenitic samples showed cracking and fracture of M(3)C carbides. For the predominantly martensitic matrix, the wear rate was higher at the solidification rate of 1.5 degrees C/s, for grain size of 66 and 93 mu m. Higher abrasive sizes were found to produce greater penetration and strain hardening of austenitic matrices. However, martensitic iron produces more microcutting, increasing the wear rate of the material. The analysis of the worn surface by scanning electron microscopy indicated abrasive wear mechanisms such as: microcutting, microfatigue and microploughing. Yet, for the iron of austenitic matrix, the microploughing mechanism was more severe. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Sensors and actuators based on piezoelectric plates have shown increasing demand in the field of smart structures, including the development of actuators for cooling and fluid-pumping applications and transducers for novel energy-harvesting devices. This project involves the development of a topology optimization formulation for dynamic design of piezoelectric laminated plates aiming at piezoelectric sensors, actuators and energy-harvesting applications. It distributes piezoelectric material over a metallic plate in order to achieve a desired dynamic behavior with specified resonance frequencies, modes, and enhanced electromechanical coupling factor (EMCC). The finite element employs a piezoelectric plate based on the MITC formulation, which is reliable, efficient and avoids the shear locking problem. The topology optimization formulation is based on the PEMAP-P model combined with the RAMP model, where the design variables are the pseudo-densities that describe the amount of piezoelectric material at each finite element and its polarization sign. The design problem formulated aims at designing simultaneously an eigenshape, i.e., maximizing and minimizing vibration amplitudes at certain points of the structure in a given eigenmode, while tuning the eigenvalue to a desired value and also maximizing its EMCC, so that the energy conversion is maximized for that mode. The optimization problem is solved by using sequential linear programming. Through this formulation, a design with enhancing energy conversion in the low-frequency spectrum is obtained, by minimizing a set of first eigenvalues, enhancing their corresponding eigenshapes while maximizing their EMCCs, which can be considered an approach to the design of energy-harvesting devices. The implementation of the topology optimization algorithm and some results are presented to illustrate the method.
Resumo:
The paper presents the development of a mechanical actuator using a shape memory alloy with a cooling system based on the thermoelectric effect (Seebeck-Peltier effect). Such a method has the advantage of reduced weight and requires a simpler control strategy as compared to other forced cooling systems. A complete mathematical model of the actuator was derived, and an experimental prototype was implemented. Several experiments are used to validate the model and to identify all parameters. A robust and nonlinear controller, based on sliding-mode theory, was derived and implemented. Experiments were used to evaluate the actuator closed-loop performance, stability, and robustness properties. The results showed that the proposed cooling system and controller are able to improve the dynamic response of the actuator. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Flow pumps have been developed for classical applications in Engineering, and are important instruments in areas such as Biology and Medicine. Among applications for this kind of device we notice blood pump and chemical reagents dosage in Bioengineering. Furthermore, they have recently emerged as a viable thermal management solution for cooling applications in small-scale electronic devices. This work presents the performance study of a novel principle of a piezoelectric flow pump which is based oil the use of a bimorph piezoelectric actuator inserted in fluid (water). Piezoelectric actuators have some advantages over classical devices, such as lower noise generation and ease of miniaturization. The main objective is the characterization of this piezoelectric pump principle through computational simulations (using finite element software), and experimental tests through a manufactured prototype. Computational data, Such as flow rate and pressure curves, have also been compared with experimental results for validation purposes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A multiphase deterministic mathematical model was implemented to predict the formation of the grain macrostructure during unidirectional solidification. The model consists of macroscopic equations of energy, mass, and species conservation coupled with dendritic growth models. A grain nucleation model based on a Gaussian distribution of nucleation undercoolings was also adopted. At some solidification conditions, the cooling curves calculated with the model showed oscillations (""wiggles""), which prevented the correct prediction of the average grain size along the structure. Numerous simulations were carried out at nucleation conditions where the oscillations are absent, enabling an assessment of the effect of the heat transfer coefficient on the average grain size and columnar-to-equiaxed transition.
Resumo:
The premature failure of a horizontal heat-exchanger, which occurred after service exposure at 580 degrees C for 50,000 h, revealed the occurrence of extensive through-thickness cracking in approximately 40% of the tube/stationary tube-sheet welds. Additionally, the internal surface of the welded joint featured intensive secondary intergranular cracking (up to 250 mu m deep), preferential formation of a 150 mu m thick layer of (Fe, Cr)(3)O-4 and internal intergranular oxidation (40 mu m deep). The welded region also showed intense carbon pick-up and, as consequence, severe precipitation of intergranular M7C3 and M23C6 carbides. The fracture surface was composed of two distinct regions: a ""planar"" region of 250 mu m, formed due to the stable crack growth along by the intergranular oxidation; and a slant region with radial marks, formed by the fast crack growth along the network of intergranular carbides. The association of intergranular oxidation pre-cracks with microstructural embrittlement promoted the premature failure, which took place by an overload mechanism, probably due to the jamming of the floating tube-sheet during the maintenance halt (cooling operation). (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The mechanical properties of Portland cement are closely related to the chemical composition of the clinker and particularly to the concentration of tricalcium silicate, C3S. In the industrial production process, the clinker must be rapidly quenched, to avoid its decomposition into dicalcium silicate and lime and also to avoid the transformation from higher temperature phases to lower temperature phases. This study investigated the kinetics of thermal decomposition of the C3S. Samples of laboratory-made C3S were thermally treated under specific conditions to determine the continuous cooling transformation (CCT) diagram of the material. The CCT diagram of the C3S showed decomposition rates with values that were much higher than the values traditionally accepted in the literature.
Resumo:
This work evaluated chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) blends, with 20%, 25%, 30%, 35% and 40%(w/w) FHCSO content. Interesterification produced reduction of trisaturated and increase in monounsaturated and diunsaturated triacylglycerols contents, which caused important changes in temperatures and enthalpies associated with the crystallization and melting thermograms. It was verified reduction in medium crystal diameter in all blends, in addition crystal morphology modification. Crystallization kinetics revealed that crystal formation induction period and maximum solid fat content were altered according to FHCSO content in original blends and as a result of random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that interesterification decreased crystallization rates and altered crystalline morphology. However, X-ray diffraction analyses showed randomization did not change the original crystalline polymorphism. The original and interesterified blends had significant predominance of beta` polymorph, which is interesting for several food applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: Amaranth is a little-known culture in Brazilian agriculture. Amaranthus cruentus BRS Alegria was the first cultivar recommended by Embrapa for the soil of the Brazilian scrubland. In order to evaluate the potential of this species in the production of flour, starch and protein concentrates, the latter products were obtained from A. cruentus BRS Alegria seeds, characterized and compared with the products obtained from the A. caudatus species cultivated in its soil of origin. RESULTS: The seeds of A. cruentus BRS Alegria furnished high-purity starch and flour with significant content of starch, proteins, and lipids. The starch and flour of this species presented higher gelatinization temperatures and formed stronger gels upon cooling compared with those obtained from the A. caudatus species. This is due to their greater amylose content and a difference in the composition of the more important fatty acids, such as stearic, oleic and linoleic acids, which indicates that they have greater heat stability. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and differential scanning calorimetry revealed the presence of albumins, globulins, glutelins and prolamins in the protein concentrate, which was obtained as a byproduct of starch production. CONCLUSION: Amaranthus cruentus BRS Alegria has potential application in the production of flour, starch and protein concentrates, with interesting characteristics for use as food ingredients. (C) 2010 Society of Chemical Industry
Resumo:
Biocompatible superparamagnetic iron oxide nanoparticles of magnetite coated with dextran were magnetically characterized using the techniques of SQUID (superconducting quantum interference device) magnetometry and ferromagnetic resonance (FMR). The SQUID magnetometry characterization was performed by isothermal measurements under applied magnetic field using the methods of zero-field-cooling (ZFC) and field-cooling (FC). The magnetic behavior of the nanoparticles indicated their superparamagnetic nature and it was assumed that they consisted exclusively of monodomains. The transition to a blocked state was observed at the temperature T(B) = (43 +/- 1) K for frozen ferrofluid and at (52 +/- 1) K for the lyophilized ferrofluid samples. The FMR analysis showed that the derivative peak-to-peak linewidth (Delta H(PP)), gyromagnetic factor (g), number of spins (N(S)), and spin-spin relaxation time (T(2)) were strongly dependent on both temperature and super-exchange interaction. This information is important for possible nanotechnological applications, mainly those which are strongly dependent on the magnetic parameters.
Resumo:
Background: Rapid maxillary expansion (RME) may improve the nasal respiratory pattern This study was performed to evaluate the effect of RME on the nasal cavity by acoustic rhinometry and computed rhinomanometry and to determine nasal and maxillary width by posteroanterior cephalometric radiography, up to 30 months after the orthodontic procedure Methods: Twenty-seven children with oral breathing, ranging in age from 7 to 70 years, and with mixed dentition were selected The children had unior bilateral posterior crossbite involving deciduous canines and the first permanent molars All subjects were submitted to nasofibroscopy, acoustic rhinometry, and computed rhinomanometry and posteroanterior cephalometric radiography at four different tunes, i e, before expansion, immediately, 90 days and 30 months after expansion Results: The mean linear left-to-right nasal cavity lateral prominence and left-to-right jugal ponds cephalometric measures increased considerably after expansion and this increase was maintained throughout the period of evaluation There was an immediate significant decrease in nasal resistance, up to 90 days after RME, but the nasal resistance increased 30 months after the procedure The acoustic rhinometry results did not show any difference in values throughout time Conclusion: RME significantly increased nasal and maxillary width as measured by frontal cephalometry, but the nasal mucosal effects were more subtle Also, the influence of RME on nasal resistance was not stable, and nasal resistance values returned to close to the initial ones after 30 months (Am J Rhinol Allergy 24, 161-165, 2010, doi 10.2500/ajra.2010.24.3440)
Resumo:
Background Reports of iatrogenic thermal injuries during laparoscopic surgery using new generation vessel-sealing devices, as well as anecdotal reports of hand burn injuries during hand-assisted surgeries, have evoked questions about the temperature safety profile and the cooling properties of these instruments. Methods This study involved video recording of temperatures generated by different instruments (Harmonic ACE [ACE], Ligasure V [LV], and plasma trisector [PT]) applied according the manufacturers` pre-set settings (ACE setting 3; LV 3 bars, and the PT TR2 50W). The video camera used was the infrared Flex Cam Pro directed to three different types of swine tissue: (1) peritoneum (P), (2) mesenteric vessels (MV), and (3) liver (L). Activation and cooling temperature and time were measured for each instrument. Results The ACE device produced the highest temperatures (195.9 degrees +/- 14.5 degrees C) when applied against the peritoneum, and they were significantly higher than the other instruments (LV = 96.4 degrees +/- 4.1 degrees C, and PT = 87 degrees +/- 2.2 degrees C). The LV and PT consistently yielded temperatures that were < 100 degrees C independent of type of tissue or ""on""/ ""off"" mode. Conversely, the ACE reached temperatures higher than 200 degrees C, with a surprising surge after the instrument was deactivated. Moreover, temperatures were lower when the ACE was applied against thicker tissue (liver). The LV and PT cooling times were virtually equivalent, but the ACE required almost twice as long to cool. Conclusions The ACE increased the peak temperature after deactivation when applied against thick tissue (liver), and the other instruments inconsistently increased peak temperatures after they were turned off, requiring few seconds to cool down. Moreover, the ACE generated very high temperatures (234.5 degrees C) that could harm adjacent tissue or the surgeon`s hand on contact immediately after deactivation. With judicious use, burn injury from these instruments can be prevented during laparoscopic procedures. Because of the high temperatures generated by the ACE device, particular care should be taken when it is used during laparoscopy.
Resumo:
It has been speculated that the homeopathic treatment of sperm cells in order to improve semen quality could be promising. However, few data is available and its use in spermatozoa requires investigation. It is well established that mitochondrial membrane potential is an important viability parameter of spermatozoa and it is intimately related to reproductive efficiency. In this manner, new technologies in order to improve the activity of sperm cells and, finally, the fecundity of swine herds are of extremely importance. Due to the lack of knowledge of homeopathic treatment effect on spermatozoa, the aim of the present study was to verify the effect of three different homeopathic treatments on viability of boar sperm cells. Three homeopathic treatments composed by Pulsatila CH6, Pulsatila and Avena CH6, Avena CH6 and one control treatment (sucrose) were added to diluted boar semen, which were cooled for 24 or 48 h. Interestingly, no positive effect of homeopathic treatments was observed over semen viability. However, it was demonstrated that the 24 h of cooling storage provided more viable sperm cells when compared to the 48-h period. This effect of storage period on sperm viability was assessed by intact plasmatic membrane, intact acrosome and mitochondrial membrane potential evaluation.
Resumo:
Animals inheriting the slick hair gene have a short, sleek, and sometimes glossy coat. The objective of the present study was to determine whether slick-haired Holstein cows regulate body temperature more effectively than wild-type Holstein cows when exposed to an acute increase in heat stress. Lactating slick cows (n = 10) and wild-type cows (n = 10) were placed for 10 h in an indoor environment with a solid roof, fans, and evaporative cooling or in an outdoor environment with shade cloth and no fans or evaporative cooling. Cows were exposed to both environments in a single reversal design. Vaginal temperature, respiration rate, surface temperature, and sweating rate were measured at 1200, 1500, 1800, and 2100 h (replicate 1) or 1200 and 1500 h (replicate 2), and blood samples were collected for plasma cortisol concentration. Cows in the outdoor environment had higher vaginal and surface temperatures, respiration rates, and sweating rates than cows in the indoor environment. In both environments, slick-haired cows had lower vaginal temperatures (indoor: 39.0 vs. 39.4 degrees C; outdoor 39.6 vs. 40.2 degrees C; SEM = 0.07) and respiration rate (indoor: 67 vs. 79 breaths/min; outdoor 97 vs. 107 breaths/min; SEM = 5.5) than wild-type cows and greater sweating rates in unclipped areas of skin (indoor: 57 vs. 43 g.h(-1)/m(2); outdoor 82 vs. 61 g.h(-1)/m(2); SEM = 8). Clipping the hair at the site of sweating measurement eliminated the difference between slick-haired and wild-type cows. Results indicate that slick-haired Holstein cows can regulate body temperature more effectively than wild-type cows during heat stress. One reason slick-haired animals are better able to regulate body temperature is increased sweating rate.
Resumo:
The aim of this study was to investigate whether distinct cooling of low fluence erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation would influence adhesion. Main factors tested were: substrates (two), irradiation conditions (three), and adhesives (three). A 750 mu m diameter tip was used, for 50 s, 1 mm from the surface, with a 0.25 W power output, 20 Hz, energy density of 2.8 J/cm(2) with energy per pulse of 12.5 mJ. When applied, water delivery rate was 11 ml/min. The analysis of variance (ANOVA) showed that laser conditioning significantly decreased the bond strength of all adhesive systems applied on enamel. On dentin, laser conditioning significantly reduced bond strength of etch-and-rinse and one-step self-etch systems; however, laser irradiation under water cooling did not alter bonding of two-step self-etching. It may be concluded that the irradiation with Er,Cr:YSGG laser at 2.8 J/cm(2) with water coolant was responsible for a better adhesion to dentin, while enamel irradiation reduced bond strength, irrespective of cooling conditions.