55 resultados para Composite resin core material
Resumo:
Purpose This 24-month randomized paired tooth clinical study evaluated the performance of All Bond 3 used in the simplified (2-step) and full (3-step) versions Methods 33 patients, with at least two similar sized non-carious cervical lesions participated in this study A total of 66 restorations were placed, half using the 2-step All Bond 3 (AB3-2) and the other half using 3-step All Bond 3 (AB3-3) The restorations were placed incrementally using the composite resin Aelite The restorations were evaluated at baseline and after 6, 12 and 24 months following the modified USPHS criteria Statistical differences between the adhesive were tested using with McNemar`s test and clinical performance over time for each material with the Fisher`s exact test (alpha= 0 05) Results After 24 months, six AB3-2 and four AB3-3 were rated as bravo for marginal discoloration but did not differ from each other significantly (P> 0 05) The retention rates at 24 months of AB3-2 and AB3-3 were 90 9% and 97 0%, respectively (P> 0 05) (Am J Dent 2010,23 231-236)
Resumo:
Objectives: To evaluate the effect of framework design on the fatigue life and failure modes of metal ceramic (MC, Ni-Cr alloy core, VMK 95 porcelain veneer), glass-infiltrated alumina (ICA, In-Ceram Alumina/VM7), and veneered yttria-stabilized tetragonal zirconia polycrystals (Y-TZP, IPSe.max ZirCAD/IPS e.max,) crowns. Methods: Sixty composite resin tooth replicas of a prepared maxillary first molar were produced to receive crowns systems of a standard (MCs, ICAs, and Y-TZPs, n = 10 each) or a modified framework design (MCm, ICAm, and Y-TZPm, n = 10 each). Fatigue loading was delivered with a spherical steel indenter (3.18 mm radius) on the center of the occlusal surface using r-ratio fatigue (30-300 N) until completion of 10(6) cycles or failure. Fatigue was interrupted every 125,000 cycles for damage evaluation. Weibull distribution fits and contour plots were used for examining differences between groups. Failure mode was evaluated by light polarized and SEM microscopy. Results: Weibull analysis showed the highest fatigue life for MC crowns regardless of framework design. No significant difference (confidence bound overlaps) was observed between ICA and Y-TZP with or without framework design modification. Y-TZPm crowns presented fatigue life in the range of MC crowns. No porcelain veneer fracture was observed in the MC groups, whereas ICAs presented bulk fracture and ICAm failed mainly through the veneer. Y-TZP crowns failed through chipping within the veneer, without core fractures. Conclusions: Framework design modification did not improve the fatigue life of the crown systems investigated. Y-TZPm crowns showed comparable fatigue life to MC groups. Failure mode varied according to crown system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: This study compared the reliability and fracture patterns of zirconia cores veneered with pressable porcelain submitted to either axial or off-axis sliding contact fatigue. Methods: Forty-two Y-TZP plates (12 mm x 12 mm x 0.5 mm) veneered with pressable porcelain (12 mm x 12 mm x 1.2 mm) and adhesively luted to water aged composite resin blocks (12 mm x 12 mm x 4 mm) were stored in water at least 7 days prior to testing. Profiles for step-stress fatigue (ratio 3:2:1) were determined from single load to fracture tests (n = 3). Fatigue loading was delivered on specimen either on axial (n = 18) or off-axis 30 degrees angulation (n = 18) to simulate posterior tooth cusp inclination creating a 0.7 mm slide. Single load and fatigue tests utilized a 6.25 mm diameter WC indenter. Specimens were inspected by means of polarized-light microscope and SEM. Use level probability Weibull curves were plotted with 2-sided 90% confidence bounds (CB) and reliability for missions of 50,000 cycles at 200 N (90% CB) were calculated. Results: The calculated Weibull Beta was 3.34 and 2.47 for axial and off-axis groups, respectively, indicating that fatigue accelerated failure in both loading modes. The reliability data for a mission of 50,000 cycles at 200 N load with 90% CB indicates no difference between loading groups. Deep penetrating cone cracks reaching the core-veneer interface were observed in both groups. Partial cones due to the sliding component were observed along with the cone cracking for the off-axis group. No Y-TZP core fractures were observed. Conclusions: Reliability was not significantly different between axial and off-axis mouth-motion fatigued pressed over Y-TZP cores, but incorporation of sliding resulted in more aggressive damage on the veneer. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Epiphany (TM) Sealer is a new dual-curing resin-based sealer and has been introduced as an alternative to gutta-percha and traditional root canal sealers. The canal filling is claimed to create a seal with the dentinal tubules within the root canal system producing a `monoblock` effect between the sealer and dentinal tubules. Therefore, considering the possibility to incorporate the others adhesive systems, it is important to study the bond strength of the resulting cement. Forty-eight root mandibular canines were sectioned 8-mm below CEJ. The dentine discs were prepared using a tapered diamond bur and irrigated with 1% NaOCl and 17% EDTA. Previous the application Epiphany (TM) Sealer, the Epiphany (TM) Primer, AdheSE, and One Up Bond F were applied to the root canal walls. The LED and QTH (Quartz Tungsten Halogen) were used to photo-activation during 45 s with power density of 400 and 720 mW/cm(2), respectively. The specimens were performed on a universal testing machine at a cross-head speed of 1 mm/min until bond failure occurred. The force was recorded and the debonding values were used to calculate Push-out bond strength. The analysis of variance (ANOVA) and Tukey`s post-hoc tests showed significant statistical differences (P < 0.05) to Epiphany (TM) Sealer/Epiphany (TM) Primer/QTH and EpiphanyTM Sealer/AdheSE/QTH, which had the highest mean values of bond strength. The efficiency of resin-based filling materials are dependent the type of light curing unit used including the power density, the polymerization characteristics of these resin-based filling materials, depending on the primer/adhesive used.
Resumo:
Introduction: This study evaluated the bond strength of translucent fiber posts to experimentally weakened radicular dentin restored with composite resin and polymerized with different light-exposure time. Methods: Roots of 60 maxillary incisors were used. Twenty-four hours after obturation, the filling materials of root canals were removed to a depth of 12 mm, and 4 groups were randomly formed. In 3 groups, root dentin was flared to produce a space between fiber post and canal walls. In the control group, the roots were not experimentally weakened. The flared roots were bulk restored with composite resin, which was light-activated through the translucent post for 40, 80, or 120 seconds. Posts were cemented, and after 24 hours, all roots were sectioned transversely in the coronal, middle, and apical regions, producing 1-mm-thick slices. Push-out test was performed, and failure modes were observed. Results The quantitative analysis showed significant statistical difference only among groups (P <.001). Comparing the weakened/restored groups, composite light-exposure time did not influence the results. Overall, adhesive failures occurred more frequently than other types of failures. Cohesive failures occurred only in the weakened/restored roots. Conclusions Intracanal root restoration with composite resin and translucent fiber posts provided similar or higher bond strength to dentin than the control group, regardless of the light-exposure time used for polymerization. (J Endod 2009;35:1034-1039)
Resumo:
This study sought to evaluate the microhardness of root dentine adjacent to glass-ionomer and composite resin restorations after erosive challenge. A crossover study was performed in two phases of 4 consecutive days each. One hundred twelve bovine root dentine slabs were obtained, and standardized box-shaped cavities were prepared at center of each specimen. The prepared cavities were randomly restored with glass-ionomer cement or composite resin. The slabs were randomly assigned among 14 volunteers, which wore intraoral palatal device containing four restored root dentin slabs. Starting on the second day, half of the palatal acrylic devices were immersed extraorally in a lemonade-like carbonated soft drink for 90 s, four times daily for 3 days. Alter 3-day wash-out, dentine slabs restored with the alternative material were placed into palatal appliance and the volunteers started the second phase of this study. After erosive challenges. microhardness measurements were performed. Regardless of the restorative material employed, eroded specimens demonstrated lower microhardness value (p < 0.0001). At eroded condition examined in this study, dentine restored with glass-ionomer cement showed higher microhardness values (p < 0.0001). It may be concluded that the glass-ionomer cement decreases the progression of root dentine erosion at restoration margin. (C) 2010 Wiley Periodicals, Inc J Biomed Mater Res Part B Appl Biomater 93B 304-305, 2010
Resumo:
The structural and thermal properties of three different dental composite resins, Filtek (TM) Supreme XT, Filtek (TM) Z-250 and TPHA (R)(3) were investigated in this study. The internal structures of uncured and cured resins with blue light-emitting diodes (LEDs) were examined by Micro-Raman spectroscopy. Thermal analysis techniques as DSC, TG and DTG methods were used to investigate the temperature characteristics, as glass transition (T (g) ), degradation, and the thermal stability of the resins. The results showed that the TPHA (R)(3) and Filtek (TM) Supreme XT presented very similar T (g) values, 48 and 50A degrees C, respectively, while the Filtek (TM) Z-250 composite resin presented a higher one, 58A degrees C. AFM microscope was utilized in order to analyze the sample morphologies, which possess different fillers. The composed resin Filtek (TM) Z-250 has a well interconnected more homogeneous morphology, suggesting a better degree of conversion correlated to the glass phase transition temperature. The modes of vibration of interest in the resin were investigated using Raman spectroscopy. It was possible to observe the bands representative for the C=C (1630 cm(-1)) and C=O(1700 cm(-1)) vibrations were studied with respect to their compositions and polymerization. It was observed that the Filtek (TM) Z -250 resin presents the best result related to the thermal properties and polymerization after light curing among the other resins.
Resumo:
Thermal properties and degree of conversion (DC%) of two composite resins (microhybrid and nanocomposite) and two photo-activation methods (continuous and gradual) displayed by the light-emitting diode (LED) light-curing units (LCUs) were investigated in this study. Differential scanning calorimetry (DSC) thermal analysis technique was used to investigate the glass transition temperature (T(g)) and degradation temperature. The DC% was determined by Fourier transform infrared spectroscopy (FT-IR). The results showed that the microhybrid composite resin presented the highest T(g) and degradation temperature values, i.e., the best thermal stability. Gradual photo-activation methods showed higher or similar T(g) and degradation temperature values when compared to continuous method. The Elipar Freelight 2 (TM) LCU showed the lowest T(g) values. With respect to the DC%, the photo-activation method did not influence the final conversion of composite resins. However, Elipar Freelight 2 (TM) LCU and microhybrid resin showed the lowest DC% values. Thus, the presented results suggest that gradual method photo-activation with LED LCUs provides adequate degree of conversion without promoting changes in the polymer chain of composite resins. However, the thermal properties and final conversion of composite resins can be influenced by the kind of composite resin and LCU.
Resumo:
The aim of this study was to evaluate the degree of conversion and hardness of a dental composite resin Filtek (TM) Z-350 (3M ESPE, Dental Products St. Paul, MN) photo-activated for 20 s of irradiation time with two different light guide tips, metal and polymer, coupled on blue LED Ultraled LCU (Dabi Atlante, SP, Brazil). With the metal light tip, power density was of 352 and with the polymer was of 456 mW/cm(2), respectively. Five samples (4 mm in diameter and 2mm in thickness-ISO 4049), were made for each Group evaluated. The measurements for DC (%) were made in a Nexus-470 FT-IR, Thermo Nicolet, E.U.A. Spectroscopy (FTIR). Spectra for both uncured and cured samples were analyzed using an accessory of reflectance diffuse. The measurements were recorded in absorbance operating under the following conditions: 32 scans, 4 cm(-1) resolution, 300-4000 cm(-1) wavelength. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm(-1)) against internal standard before and after curing of the sample: aromatic C-C (peak at 1610 cm(-1)). The Vickers hardness measurements (top and bottom surfaces) were performed in a universal testing machine (Buehler MMT-3 digital microhardness tester Lake Bluff, Illinois USA). A 50 gf load was used and the indenter with a dwell time of 30 s. The data were submitted to the test t Student at significance level of 5%. The mean values of degree of conversion for the polymer and metal light guide tip no were statistically different (p = 0.8389). The hardness mean values were no statistically significant different among the light guide tips (p = 0.6244), however, there was difference between top and bottom surfaces (p < 0.001). The results show that so much the polymer light tip as the metal light tip can be used for the photo-activation, probably for the low quality of the light guide tip metal.
Resumo:
Objective: To evaluate the flexural strength, microleakage, and degree of conversion of a microhybrid resin polymerized with argon laser and halogen lamp. Method and Materials: For both flexural test and degree of conversion analysis, 5 bar samples of composite resin were prepared and polymerized according to ISO 4049. The halogen light-curing unit was used with 500 MW/cm(2) for 20 seconds and the argon laser with 250 mW for 10 and 20 seconds. Samples were stored in distilled water in a dark environment at 37 degrees C for 24 hours. The flexural property was quantified by a 3-point loading test. For the microleakage evaluation, 60 bovine incisors were used to prepare standardized Class 5 cavities, which were restored and polished. Specimens were stored in distilled water for 24 hours at 37 degrees C and thermocycled 500 times (6 degrees C to 60 degrees C). Specimens were then immersed in art aqueous solution of basic fuchsin for 24 hours. Longitudinal sections of each restoration were obtained and examined with a stereomicroscope for qualitative evaluation of microleakage. Fourier transform (FT)-Raman RFS 100/S spectrometer (Bruker) was used to analyze the degree of conversion. Results: ANOVA showed no statistically significant differences of flexural strength between the photoactivation types evaluated in the flexural study. Microleakage data were statistically analyzed by Mann-Whitney and Kruskal-Wallis tests. Enamel margins resulted in a statistically lower degree of leakage than dentin margins. No statistically significant difference was found among the 3 types of photocuring studied. ANOVA also showed no statistically significant difference in the degree of conversion among the studied groups. Conclusion: According to the methodology used in this research, the argon laser is a possible alternative for photocuring, providing the same quality of polymerization as the halogen lamp. None of the photocured units tested in this study completely eliminated microleakage.