48 resultados para Colestase Extra-Hepática
Resumo:
The squashed Kaluza-Klien (KK) black holes differ from the Schwarzschild black holes with asymptotic flatness or the black strings even at energies for which the KK modes are not excited yet, so that squashed KK black holes open a window in higher dimensions. Another important feature is that the squashed KK black holes are apparently stable and, thereby, let us avoid the Gregory-Laflamme instability. In the present paper, the evolution of scalar and gravitational perturbations in time and frequency domains is considered for these squashed KK black holes. The scalar field perturbations are analyzed for general rotating squashed KK black holes. Gravitational perturbations for the so-called zero mode are shown to be decayed for nonrotating black holes, in concordance with the stability of the squashed KK black holes. The correlation of quasinormal frequencies with the size of extra dimension is discussed.
Resumo:
In theories with universal extra dimensions, all standard model fields propagate in the bulk and the lightest state of the first Kaluza-Klein (KK) level can be made stable by imposing a Z(2) parity. We consider a framework where the lightest KK particle (LKP) is a neutral, extremely weakly interacting particle such as the first KK excitation of the graviton, while the next-to-lightest KK particle (NLKP) is the first KK mode of a charged right-handed lepton. In such a scenario, due to its very small couplings to the LKP, the NLKP is long-lived. We investigate the production of these particles from the interaction of high energy neutrinos with nucleons in the Earth and determine the rate of NLKP events in neutrino telescopes. Using the Waxman-Bahcall limit for the neutrino flux, we find that the rate can be as large as a few hundreds of events a year for realistic values of the NLKP mass.
Resumo:
The dynamical discrete web (DyDW), introduced in the recent work of Howitt and Warren, is a system of coalescing simple symmetric one-dimensional random walks which evolve in an extra continuous dynamical time parameter tau. The evolution is by independent updating of the underlying Bernoulli variables indexed by discrete space-time that define the discrete web at any fixed tau. In this paper, we study the existence of exceptional (random) values of tau where the paths of the web do not behave like usual random walks and the Hausdorff dimension of the set of such exceptional tau. Our results are motivated by those about exceptional times for dynamical percolation in high dimension by Haggstrom, Peres and Steif, and in dimension two by Schramm and Steif. The exceptional behavior of the walks in the DyDW is rather different from the situation for the dynamical random walks of Benjamini, Haggstrom, Peres and Steif. For example, we prove that the walk from the origin S(0)(tau) violates the law of the iterated logarithm (LIL) on a set of tau of Hausdorff dimension one. We also discuss how these and other results should extend to the dynamical Brownian web, the natural scaling limit of the DyDW. (C) 2009 Elsevier B.V. All rights reserved.