250 resultados para CARDIOPULMONARY EXERCISE TEST
Resumo:
This study evaluated the effects of a micro cycle of overload training (1st-8th day) on metabolic and hormonal responses in male runners with or without carbohydrate supplementation and investigated the cumulative effects of this period on a session of intermittent high-intensity running and maximum-performance-test (9th day). The participants were 24 male runners divided into two groups, receiving 61% of their energy intake as CHO (carbohydrate-group) and 54% in the control-group (CON). The testosterone was higher for the CHO than the CON group after the overload training (694.0 +/- A 54.6 vs. CON 610.8 +/- A 47.9 pmol/l). On the ninth day participants performed 10 x 800 m at mean 3 km velocity. An all-out 1000 m running was performed before and after the 10 x 800 m. Before, during, and after this protocol, the runners received solution containing CHO or the CON equivalent. The performance on 800 m series did not differ in either group between the first and last series of 800 m, but for the all-out 1000 m test the performance decrement was lower for CHO group (5.3 +/- A 1.0 vs. 10.6 +/- A 1.3%). The cortisol concentrations were lower in the CHO group in relation to CON group (22.4 +/- A 0.9 vs. 27.6 +/- A 1.4 pmol/l) and the IGF1/IGFBP3 ratio increased 12.7% in the CHO group. During recovery, blood glucose concentrations remained higher in the CHO group in comparison with the CON group. It was concluded that CHO supplementation possibly attenuated the suppression of the hypothalamic-pituitary-gonadal axis and resulted in less catabolic stress, and thus improved running performance.
Resumo:
Study Objectives: To test the effects of exercise training on sleep and neurovascular control in patients with systolic heart failure with and without sleep disordered breathing. Design: Prospective interventional study. Setting: Cardiac rehabilitation and exercise physiology unit and sleep laboratory. Patients: Twenty-five patients with heart failure, aged 42 to 70 years, and New York Heart Association Functional Class I-III were divided into 1 of 3 groups: obstructive sleep apnea (n = 8), central sleep apnea (n 9) and no sleep apnea (n = 7). Interventions: Four months of no-training (control) followed by 4 months of an exercise training program (three 60-minute, supervised, exercise sessions per week). Measures and Results: Sleep (polysomnography), microneurography, forearm blood flow (plethysmography), peak VO(2). and quality of life were evaluated at baseline and at the end of the control and trained periods. No significant changes occurred in the control period. Exercise training reduced muscle sympathetic nerve activity (P < 0.001) and increased forearm blood flow (P < 0.01), peak VO(2) (P < 0.01), and quality of life (P < 0.01) in all groups, independent of the presence of sleep apnea. Exercise training improved the apnea-hypopnea index, minimum O(2) saturation, and amount stage 3-4 sleep (P < 0.05) in patients with obstructive sleep apnea but had no significant effects in patients with central sleep apnea. Conclusions. The beneficial effects of exercise training on neurovascular function, functional capacity, and quality of life in patients with systolic dysfunction and heart failure occurs independently of sleep disordered breathing. Exercise training lessens the severity of obstructive sleep apnea but does not affect central sleep apnea in patients with heart failure and sleep disordered breathing.
Resumo:
The MASS III Trial is a large project from a single institution, The Heart Institute of the University of Sao Paulo, Brazil (InCor), enrolling patients with coronary artery disease and preserved ventricular function. The aim of the MASS III Trial is to compare medical effectiveness, cerebral injury, quality of life, and the cost-effectiveness of coronary surgery with and without of cardiopulmonary bypass in patients with multivessel coronary disease referred for both strategies. The primary endpoint should be a composite of cardiovascular mortality, cerebrovascular accident, nonfatal myocardial infarction, and refractory angina requiring revascularization. The secondary end points in this trial include noncardiac mortality, presence and severity of angina, quality of life based on the SF-36 Questionnaire, and cost-effectiveness at discharge and at 5-year follow-up. In this scenario, we will analyze the cost of the initial procedure, hospital length of stay, resource utilization, repeat hospitalization, and repeat revascularization events during the follow-up. Exercise capacity will be assessed at 6-months, 12-months, and the end of follow-up. A neurocognitive evaluation will be assessed in a subset of subjects using the Brain Resource Center computerized neurocognitive battery. Furthermore, magnetic resonance imaging will be made to detect any cerebral injury before and after procedures in patients who undergo coronary artery surgery with and without cardiopulmonary bypass.
Resumo:
Our purpose was to examine possible influences of age on resistance exercise (RE) intensity progression in men. Twenty-four men, divided in young sedentary (YS; n = 10; 25.9 +/- 3.7 years), older sedentary (OS; n = 7; 67.4 +/- 5.2 years), and older runners (OR; n = 7; 71.3 +/- 3.0 years), underwent a 2 times-a-week RE program for 13 weeks. Muscle strength was assessed before and after training by 1-repetition maximum test. RE workloads were recorded for each exercise session, and increases of 5-10% were made whenever adaptation occurred. Muscle strength improved similarly in all groups after RE (P < 0.001). Relative RE intensity progression was not significantly different between YS and OS, except for a greater increase in calf raise relative workload observed in YS (P < 0.05). In contrast, OR displayed greater relative workload increase in 7 and 6 exercises than YS and OS, respectively (P < 0.05). The RE was safe as no injuries or major muscle pain were observed in either group. These results suggest that healthy sedentary older men are capable to exercise and increase RE intensity in the same way as young men, while physically active older men are capable to increase RE intensity in greater way than sedentary young and older men.
Resumo:
Myocardial hypertrophy and dysfunction occur in response to excessive catecholaminergic drive. Adverse cardiac remodelling is associated with activation of proinflammatory cytokines in the myocardium. To test the hypothesis that exercise training can prevent myocardial dysfunction and production of proinflammatory cytokines induced by beta-adrenergic hyperactivity, male Wistar rats were assigned to one of the following four groups: sedentary non-treated (Con); sedentary isoprenaline treated (Iso); exercised non-treated (Ex); and exercised plus isoprenaline (Iso+Ex). Echocardiography, haemodynamic measurements and isolated papillary muscle were used for functional evaluations. Real-time RT-PCR and Western blot were used to quantify tumour necrosis factor alpha, interleukin-6, interleukin-10 and transforming growth factor beta(1) (TGF-beta(1)) in the tissue. NF-kappa B expression in the nucleus was evaluated by immunohistochemical staining. The Iso rats showed a concentric hypertrophy of the left ventricle (LV). These animals exhibited marked increases in LV end-diastolic pressure and impaired myocardial performance in vitro, with a reduction in the developed tension and maximal rate of tension increase and decrease, as well as worsened recruitment of the Frank-Starling mechanism. Both gene and protein levels of tumour necrosis factor alpha and interleukin-6, as well as TGF-beta(1) mRNA, were increased. In addition, the NF-kappa B expression in the Iso group was significantly raised. In the Iso+Ex group, the exercise training had the following effects: (1) it prevented LV hypertrophy; (ii) it improved myocardial contractility; (3) it avoided the increase of proinflammatory cytokines and improved interleukin-10 levels; and (4) it attenuated the increase of TGF-beta(1) mRNA. Thus, exercise training in a model of beta-adrenergic hyperactivity can avoid the adverse remodelling of the LV and inhibit inflammatory cytokines. Moreover, the cardioprotection is related to beneficial effects on myocardial performance.
Resumo:
Background: Impairment in pulmonary capacity due to pleural effusion compromises daily activity. Removal of fluid improves symptoms, but the impact, especially on exercise capacity, has not been determined. Methods: Twenty-five patients with unilateral pleural effusion documented by chest radiograph were included. The 6-min walk test, Borg modified dyspnea score, FVC, and FEV, were analyzed before and 48 h after the removal of large pleural effusions. Results: The mean fluid removed was 1,564 +/- 695 mL. After the procedure, values of FVC, FEV and 6-min walk distance increased (P<.001), whereas dyspnea decreased (P<.001). Statistical correlations (P<.001) between 6-min walk distance and FVC (r=0.725) and between 6-min walk distance and FEV, (r=0.661) were observed. Correlations also were observed between the deltas (prethoracentesis X postthoracentesis) of the 6-min walk test and the percentage of FVC (r=0.450) and of FEV, (r=0.472) divided by the volume of fluid removed (P<.05). Conclusion: In addition to the improvement in lung function after thoracentesis, the benefits of fluid removal are more evident in situations of exertion, allowing better readaptation of patients to routine activities. CHEST 2011; 139(6):1424-1429
Resumo:
Background: Although obesity is usually observed in peripheral arterial disease (PAD) patients, the effects of the association between these diseases on walking capacity are not well documented. Objective: The main objectives of this study were to determine the effects of obesity on exercise tolerance and post-exercise hemodynamic recovery in elderly PAD patients. Methods: 46 patients with stable symptoms of intermittent claudication were classified according to their body mass index (BMI) into normal group (NOR) = BMI < 28.0 and obese or in risk of obesity group (OBE) = BMI >= 28.0. All patients performed a progressive graded treadmill test. During exercise, ventilatory responses were evaluated and pre- and post-exercise ankle and arm blood pressures were measured. Results: Exercise tolerance and oxygen consumption at total walking time were similar between OBE and NOR. However, OBE showed a lower claudication time (309 +/- 151 vs. 459 +/- 272 s, p = 0.02) with a similar oxygen consumption at this time. In addition, OBE presented a longer time for ankle brachial index recovery after exercise (7.8 +/- 2.8 vs. 6.3 +/- 2.6 min, p = 0.02). Conclusion: Obesity in elderly PAD patients decreased time to claudication, and delayed post-exercise hemodynamic recovery. These results suggest that muscle metabolic demand, and not total workload, is responsible for the start of the claudication and maximal exercise tolerance in PAD patients. Moreover, claudication duration might be responsible for the time needed to a complete hemodynamic recovery after exercise. Copyright (c) 2008 S. Karger AG, Basel
Resumo:
BACKGROUND Spontaneously hypertensive rats (SHRs) show increased cardiac sympathetic activity, which could stimulate cardiomyocyte hypertrophy, cardiac damage, and apoptosis. Norepinephrine (NE)induced cardiac oxidative stress seems to be involved in SHR cardiac hypertrophy development. Because exercise training (ET) decreases sympathetic activation and oxidative stress, it may alter cardiac hypertrophy in SHR. The aim of this study was to determine, in vivo, whether ET alters cardiac sympathetic modulation on cardiovascular system and whether a correlation exists between cardiac oxidative stress and hypertrophy. METHODS Male SHRs (15-weeks old) were divided into sedentary hypertensive (SHR, n = 7) and exercise-trained hypertensive rats (SHR-T, n = 7). Moderate ET was performed on a treadmill (5 days/week, 60 min, 10 weeks). After ET, cardiopulmonary reflex responses were assessed by bolus injections of 5-HT. Autoregressive spectral estimation was performed for systolic arterial pressure (SAP) with oscillatory components quantified as low (LF: 0.2-0.75 Hz) and high (HF:0.75-4.0 Hz) frequency ranges. Cardiac NE concentration, lipid peroxidation, antioxidant enzymes activities, and total nitrates/nitrites were determined. RESULTS ET reduced mean arterial pressure, SAP variability (SAP var), LIF of SAP, and cardiac hypertrophy and increased cardiopulmonary reflex responses. Cardiac lipid peroxidation was decreased in trained SHRs and positively correlated with NE concentrations (r= 0.89, P < 0.01) and heart weight/body weight ratio (r= 0.72, P < 0.01), and inversely correlated with total nitrates/nitrites (r= -0.79, P < 0.01). Moreover, in trained SHR, cardiac total nitrates/nitrites were inversely correlated with NE concentrations (r= -0.82, P < 0.01). CONCLUSIONS ET attenuates cardiac sympathetic modulation and cardiac hypertrophy, which were associated with reduced oxidative stress and increased nitric oxide (NO) bioavailability. Am J Hypertens 2008;21:1138-1193 (C) 2008 American Journal of Hypertension, Ltd.
Resumo:
Purpose: In this study we analyzed the role played by aerobic exercise training in the plasma lipoprotein profile, prebeta 1-HDL concentration, and in the in vitro HDL3 ability to remove cholesterol from macrophages and inhibit LDL oxidation in type 2 diabetes mellitus (DM) patients and control subjects, in the fasting and postprandial states. Methods: Healthy controls (HTC, N = 11; 1 M/10 F) and subjects with type 2 diabetes mellitus (DMT, N = 11; 3M/ 8F) were engaged in a 4-month aerobic training program, and compared with a group of sedentary subjects with type 2 diabetes mellitus (DMS, N = 10; 4 M/6 F). All groups were submitted to an oral fat load test to analyze all parameters, both at the beginning of the investigation protocol (basal) and at the end of the study period (final). Results: Exercising did not modify body weight, BMI, plasma concentrations of total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides (TG), glucose, insulin, or HOMA-IR, but it reduced the waist circumference. The HDL3 Composition did not change, and its ability to remove cell cholesterol was unaltered by aerobic training. In DMT but not in HTC, aerobic training improved 15% the HDL3 protective effect against LDL maximal oxidation rate in the fasting state, and reduced 24% the plasma prebeta 1-HDL concentration in the postprandial state, suggesting an enhanced prebeta 1-HDL conversion into larger, more mature HDL particles. In this regard, regular aerobic exercise enriched HDL2 with TG in the fasting and postprandial states in HTC and in the fasting phase in DMT. Conclusion: Our results show that aerobic exercise training in diabetes mellitus improves the HDL efficiency against LDL oxidation and favors HDL maturation. These findings were independent of changes in insulin resistance and of the rise of plasma HDL cholesterol concentration.
Resumo:
The purpose of this study was to examine the preventive effect of exercise on lumbar vertebrae in ovariectomized rats. Three-month-old female Wistar rats were divided into 3 groups: control group (A, n = 10); non-exercised ovariectomized group (B, n = 7) and exercised ovariectomized group (C, n = 7). The rats from group C were subjected to treadmill exercise (15 m/minute in the initial six weeks and 19 m/minute in the next six weeks, 1 hour/day, 4 days/week) for 12 weeks. At death, the fourth lumbar vertebrae were removed and an anthropometrical analysis by a paquimeter and a mechanical compression test by a universal test machine were performed. After 12 weeks, the ovariectomy decreased the superior-inferior vertebral height and the maximal braking load in group B compared to group A, while the exercise increased the vertebral mass in group C compared to both groups A and B (p < 0.01) and the stiffness compared to group B. We concluded the physical activity has an important role to prevent the osteopenia in lumbar vertebrae.
Resumo:
The aim of the present study was to compare oxidative stress biomarkers determined in blood and saliva before and after acute resistance exercise. 1 week after 1 maximum repetition (1RM) test 11 healthy well-trained males completed a hypertrophy acute session of resistance training including 3 sets of 10 repetitions at 75% of the 1RM, with 90s rest periods between sets. Venous blood and saliva samples were collected before (pre) and 10 min after (post) the resistance training session. A significant (p < 0.05) rise in blood lactate accumulation (pre: 1.6 +/- 0.4 vs. post: 9.5 +/- 2.4) was found post-acute resistance training compared with baseline values. Significant increases (p < 0.05) in TBARS (42%), AOPP (28%), uric acid (27%) and GSH (14%) were detected post-acute resistance training in relation to pre in blood samples. A significant increase (p < 0.05) in uric acid (36%) was found in saliva post-acute resistance training as well as a significant correlation (p < 0.05) between uric acid determined in blood and saliva. Statistical analysis did not reveal any other change in the salivary oxidative stress biomarkers. In conclusion, an acute session of resistance exercise induces oxidative stress in plasma of trained men after acute resistance training, which was not found in saliva samples except for uric acid.
Resumo:
Dynamic exercise evokes sustained blood pressure and heart rate (HR) increases. Although it is well accepted that there is a CNS mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is still limited. The bed nucleus of the stria terminalis (BST) is involved in exercise-evoked cardiovascular responses in rats. However, the specific neurotransmitter involved in BST-related modulation of cardiovascular responses to dynamic exercise is still unclear. In the present study, we investigated the role of local BST adrenoceptors in the cardiovascular responses evoked when rats are submitted to an acute bout of exercise on a rodent treadmill. We observed that bilateral microinjection of the selective alpha 1-adrenoceptor antagonist WB4101 into the BST enhanced the HR increase evoked by dynamic exercise without affecting the mean arterial pressure (MAP) increase. Bilateral microinjection of the selective alpha 2-adrenoceptor antagonist RX821002 reduced exercise-evoked pressor response without changing the tachycardiac response. BST pretreatment with the nonselective beta-adrenoceptor antagonist propranolol did not affect exercise-related cardiovascular responses. BST treatment with either WB4101 or RX821002 did not affect motor performance in the open-field test, which indicates that effects of BST adrenoceptor antagonism in exercise-evoked cardiovascular responses were not due to changes in motor activity. The present findings are the first evidence showing the involvement of CNS adrenoceptors in cardiovascular responses during dynamic exercise. Our results indicate an inhibitory influence of BST alpha 1-adrenoceptor on the exercise-evoked HR response. Data also point to a facilitatory role played by the activation of BST alpha 2-adrenoceptor on the pressor response to dynamic exercise. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Dynamic exercise evokes sustained cardiovascular changes, which are characterized by blood pressure and heart rate (HR) increases. Although it is well accepted that there is a central nervous system (CNS) mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is limited. The bed nucleus of the stria terminalis (BST) is a forebrain structure known to be involved in central cardiovascular control. Based on this, we tested the hypothesis that BST modulates HR and mean arterial pressure (MAP) responses evoked when rats are submitted to dynamic exercise. Male Wistar rats were tested at three levels of exercise (0.4, 0.8 and 1 km h-1) on a rodent treadmill before and after BST treatment with CoCl(2), a non-selective neurotransmission blocker. Bilateral microinjection of CoCl(2) (1 nmol in 100 nl artificial cerebrospinal fluid) into the BST reduced the pressor response to exercise at 0.4 km h-1 as well as the tachycardic responses evoked by exercise at 0.4, 0.8 and 1 km h-1. The BST treatment with CoCl(2) did not affect baseline MAP or HR, suggesting a lack of tonic BST influence on cardiovascular parameters at rest. Moreover, BST treatment with CoCl(2) did not affect motor performance in the open-field test, which indicates that effects of BST inhibition on cardiovascular responses to dynamic exercise are not due to changes in motor activity. The present results suggest that local neurotransmission in the BST modulates exercise-related cardiovascular adjustments. Data indicate that BST facilitates pressor and tachycardic responses evoked by dynamic exercise in rats.
Resumo:
Low cardiac output syndrome (LCOS) is a common problem following cardiac surgery with cardiopulmonary bypass (CPB) in neonates and infants, and its early recognition remains a challenging task. We aimed to test whether a multimarker approach combining inflammatory and cardiac markers provides complementary information for prediction of LCOS and death in children submitted to cardiac surgery with CPB. Forty-six children younger than 18 months with congenital heart defects were prospectively enrolled. No intervention was made. Blood samples were collected pre-operatively, during CPB and post-operatively (PO) for measurement of interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor (TNF)-alpha, cardiac troponin I (cTnI) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). Clinical data and outcome variables were recorded. Logistic regression was used to identify predictors of LCOS and death. Multivariate logistic regression identified pre-operative NT-proBNP and IL-8 4 h PO as independent predictors of LCOS, while cTnI 4 h PO and CPB length were independent predictors of death. The use of inflammatory and cardiac markers in combination improved sensitivity, negative predictive value and accuracy of the models. In conclusion, the combined assessment of inflammatory and cardiac biochemical markers can be useful for identifying young children at increased risk for LCOS and death after heart surgery with CPB. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
ESTEVES, A. M., M. T. DE MELLO, M. PRADELLA-HALLINAN, and S. TUFIK. Effect of Acute and Chronic Physical Exercise on Patients with Periodic Leg Movements. Med. Sci. Sports Exerc., Vol. 41, No. 1,. pp. 237-242, 2009. Purpose: Nonpharmacological interventions may lead to an improvement in sleep quality. The objective of our study was to evaluate the effects of acute intensive exercise and chronic exercise on sleep patterns in patients with periodic leg movements (PLM). Methods: The study involved acute and chronic exercise. The acute intensive exercise group consisted of 22 volunteers who underwent a maximum effort test and a polysomnography (PSG) on the same night. The chronic exercise group included. 11 patients who performed 72 physical training sessions undergoing three PSG studies on the night of sessions 1, 36, and 72. Blood samples were collected from both acute and chronic groups for beta-endorphin dosage. Results: Our results showed that both forms of physical exercise lowered PLM levels. The acute physical exercise increased sleep efficiency, rapid eye movement (REM) sleep, and reduced wake after sleep onset, whereas the chronic physical exercise increased sleep efficiency, REM sleep, and reduced sleep latency. We also found a significant negative correlation between beta-endorphin release after acute intensive exercise and PLM levels (r = -0.63). Conclusion: Physical exercise may improve sleep patterns and reduce PLM levels. The correlation between beta-endorphin release after acute intensive exercise and PLM levels might be associated with the impact physical exercise has on the opiodergic system. We suggest that physical exercise may be a useful nonpharmacological treatment for PLM.