54 resultados para Building Stimulation
Resumo:
Evidences from studies using electrical or chemical stimulation of the midbrain periaqueductal gray (PAG) suggest that whereas the dorsal PAG is critical for the regulation of panic-related defensive behaviors, the ventrolateral PAG (vlPAG) modulates generalized anxiety-related responses. In the present study we evaluated whether the activation of 5-HT1A and 5-HT2A/2C receptors in the ventrolateral column of the periaqueductal gray (vlPAG) causes differential effects on an anxiety- and a panic-related defensive behavior, respectively, inhibitory avoidance and escape, in male Wistar rats submitted to the elevated T-maze. Our results showed that intra-vlPAG injection of the endogenous agonist serotonin, the 5-HT1A/7 agonist 8-OH-DPAT or 5-HT2A/2C agonist DOI impaired the acquisition of inhibitory avoidance, without interfering with escape performance. The same selective anxiolytic effect was also observed after local administration of the benzodiazepine receptor agonist midazolam. Moreover, as shown by the results of antagonism studies, 5-HT2A receptors are recruited for the anxiolysis caused by serotonin and DOI. while 5-HT1A receptors account for the effect of 8-OH-DPAT. In conclusion, our data show that the activation of 5-HT1A and 5-HT2A receptors in the vlPAG affects defensive responses related to generalized anxiety, but not panic disorder. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The electrical stimulation of the occipital (OC) or retrosplenial (RSC) cortex produces antinociception in the rat tail-flick test. These cortices send inputs to the anterior pretectal nucleus (APtN) which is implicated in antinociception and nociception. At least muscarinic cholinergic, opioid, and serotonergic mechanisms in the APtN are involved in stimulation-produced antinociception (SPA) from the nucleus. In this study, the injection of 2% lidocaine (.25 mu L) or methysergide (40 and 80 ng/.25 mu L) into the APtN reduced the duration but did not change the intensity of SPA from the OC, whereas both duration and intensity of SPA from the RSC were significantly reduced in rats treated with lidocaine or naloxone (10 and 50 ng/.25 mu L), injected into the ANN. Naloxone or methysegide injected into the APtN was ineffective against SPA from the OC or RSC, respectively. Atropine (100 ng/.25 mu L) injected into the ANN was ineffective against SPA from either the OC or RSC. We conclude that the APtN acts as an intermediary for separate descending pain inhibitory pathways activated from the OC and RSC, utilizing at least serotonin and endogenous opioid as mediators in the nucleus. Perspective: Stimulation-induced antinociception from the retrosplenial or occipital cortex in the rat tail-flick test depends on the activation of separate descending pain inhibitory pathways that utilize the APtN as a relay station. (C) 2011 by the American Pain Society
Resumo:
We evaluated the involvement of dorsal hippocampus (DH) 5-HT1A receptors in the mediation of the behavioral effects caused by the pharmacological manipulation of 5-HT neurons in the median raphe nucleus (MRN). To this end, we used the rat elevated T-maze test of anxiety. The results showed that intra-DH injection of the 5-HT1A/7 agonist 8-OH-DPAT facilitated inhibitory avoidance, an anxiogenic effect, without affecting escape. Microinjection of the 5-HT1A antagonist WAY-100635 was ineffective. In the elevated T-maze, inhibitory avoidance and escape have been related to generalized anxiety and panic disorders, respectively. Intra-MRN administration of the excitatory aminoacid kainic acid, which non-selectively stimulates 5-HT neurons in this brain area facilitated inhibitory avoidance and impaired escape performance, but also affected locomotion. Intra-MRN injection of WAY-100635, which has a disinhibitory effect on the activity of 5-HT neurons in this midbrain area, only facilitated inhibitory avoidance. Preadministration of WAY-100635 into the DH blocked the behavioral effect of intra-MRN injection of WAY-100635, but not of kainic acid. These results indicate that DH 5-HT1A receptors mediate the anxiogenic effect induced by the selective stimulation of 5-HT neurons in the MRN. (c) 2007 Elsevier B.V. and ECNP. All rights reserved.
Resumo:
Electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) evokes escape, a defensive behavior that has been related to panic attacks. Injection of 5-HT(1A) or 5-HT(2A) receptor agonists into this midbrain area inhibits this response. It has been proposed that the impairment of 5-HT mechanisms controlling escape at the level of the DPAG may underlie the susceptibility to panic attacks that characterizes the panic disorder. In this study we evaluated the effects of the pharmacological manipulation of the dorsal raphe nucleus (DRN), which are the main source of 5-HT input to the DPAG, on the escape response evoked in rats by the intra-DPAG injection of the nitric oxide donor SIN-1. The results showed that DRN administration of the 5-HT(1A) receptor agonist 8-OH-DPAT which inhibits the activity of 5-HT neurons favored the expression of escape induced by SIN-1. Intra-DRN injection of the excitatory amino acid kainic acid or the 5-HT(1A) receptor antagonist WAY-100635 did not change escape expression. However, both compounds fully blocked the escape reaction generated by intra-DPAG injection of the excitatory amino acid D,L-homocysteic acid (DLH). Overall, the results indicate that 5-HT neurons in the DRN exert a bidirectional control upon escape behavior generated by the DPAG. Taking into account the effect of WAY-100635 on DLH-induced escape, they also strengthen the view that DRN 5-HT(1A) autoreceptors are under tonic inhibitory influence by 5-HT. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Durand MT, Castania JA, Fazan R Jr, Salgado MC, Salgado HC. Hemodynamic responses to aortic depressor nerve stimulation in conscious L-NAME-induced hypertensive rats. Am J Physiol Regul Integr Comp Physiol 300: R418-R427, 2011. First published November 24, 2010; doi: 10.1152/ajpregu.00463.2010.-The present study investigated whether baroreflex control of autonomic function is impaired when there is a deficiency in NO production and the role of adrenergic and cholinergic mechanisms in mediating reflex responses. Electrical stimulation of the aortic depressor nerve in conscious normotensive and nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats was applied before and after administration of methylatropine, atenolol, and prazosin alone or in combination. The hypotensive response to progressive electrical stimulation (5 to 90 Hz) was greater in hypertensive (-27 +/- 2 to -64 +/- 3 mmHg) than in normotensive rats (-17 +/- 1 to -46 +/- 2 mmHg), whereas the bradycardic response was similar in both groups (-34 +/- 5 to -92 +/- 9 and -21 +/- 2 to -79 +/- 7 beats/min, respectively). Methylatropine and atenolol showed no effect in the hypotensive response in either group. Methylatropine blunted the bradycardic response in both groups, whereas atenolol attenuated only in hypertensive rats. Prazosin blunted the hypotensive response in both normotensive (43%) and hypertensive rats (53%) but did not affect the bradycardic response in either group. Prazosin plus angiotensin II, used to restore basal arterial pressure, provided hemodynamic responses similar to those of prazosin alone. The triple pharmacological blockade abolished the bradycardic response in both groups but displayed similar residual hypotensive response in hypertensive (-13 +/- 2 to -27 +/- 2 mmHg) and normotensive rats (-10 +/- 1 to -25 +/- 3 mmHg). In conclusion, electrical stimulation produced a well-preserved baroreflex-mediated decrease in arterial pressure and heart rate in conscious L-NAME-induced hypertensive rats. Moreover, withdrawal of the sympathetic drive played a role in the reflex bradycardia only in hypertensive rats. The residual fall in pressure after the triple pharmacological blockade suggests the involvement of a vasodilatory mechanism unrelated to NO or deactivation of alpha(1)-adrenergic receptor.
Resumo:
PURPOSE. To assess the safety of transcorneal electrical stimulation (TES) and explore its efficacy in various subjective and objective parameters of visual function in patients with retinitis pigmentosa (RP). METHODS. Twenty-four patients in this prospective, randomized, partially blinded, good-clinical-practice study underwent TES (5-ms biphasic pulses; 20 Hz; DTL electrodes) 30 minutes per week for 6 consecutive weeks. The patients were randomly assigned to one of three groups: sham, 66%, or 150% of individual electrical phosphene threshold (EPT). Visual acuity (VA), visual field (VF; kinetic, static), electroretinography (Ganzfeld, multifocal), dark-adaptation (DA), color discrimination, and EPTs were assessed at all visits or four times, according to the study plan. RESULTS. TES using DTL electrodes was tolerated well; all patients finished the study. Two adverse (foreign body sensation), but no serious adverse events were encountered. There was a tendency for most functional parameters to improve (8/18) or to remain constant (8/18) in the 150% group. VF area and scotopic b-wave amplitude reached statistical significance (P < 0.027 and P < 0.001, respectively). Only desaturated color discrimination and VF mean sensitivity decreased. There was no obvious trend in the 66% group. CONCLUSIONS. TES was found to be safe in RP patients. Positive trends were discovered, but due to the small sample size of this exploratory study, statistical significance was reached only for VF area and scotopic b-wave amplitude. Further studies with larger sample sizes and longer duration are needed to confirm the findings and to define optimal stimulation parameters. (ClinicalTrials.gov number, NCT00804102.) (Invest Ophthalmol Vis Sci. 2011;52:4485-4496) DOI:10.1167/iovs.10-6932
Resumo:
We investigated the effect of transcutaneous electrical nerve stimulation (TENS) for inguinal herniorrhaphy postoperative pain control in a prospective, randomized, double-blinded, placebo-controlled study. Forty patients undergoing unilateral inguinal herniorrhaphy with an epidural anesthetic technique were randomly allocated to receive either active TENS or placebo TENS. Postoperative pain was evaluated using a standard 10-point numeric rating scale (NRS). Analgesic requirements were also recorded. TENS (100 Hz, strong but comfortable sensory intensity) was applied for 30 minutes through 4 electrodes placed around the incision twice, 2 and 4 hours after surgery. Pain was assessed before and after each application of TENS and 8 and 24 hours after surgery. In the group treated with active TENS, pain intensity was significantly lower 2 hours (P = .028), 4 hours (P = .022), 8 hours (P = .006), and 24 hours (P = .001) after the surgery when compared with the group that received placebo TENS. Active TENS also decreased analgesic requirements in the postoperative period when compared with placebo TENS (P = .001). TENS is thus beneficial for postoperative pain relief, after inguinal herniorrhaphy; it has no observable side effects, and the pain-reducing effect continued for at least 24 hours. Consequently, the routine use of TENS after inguinal herniorrhaphy is recommended. Perspective: This study presents the hypoalgesic effect of high-frequency TENS for postoperative pain after inguinal herniorrhaphy. This may reinforce findings from basic science showing an opioid-like effect provided by TENS, given that high-frequency TENS has been shown to activate delta-opioid receptors. (C) 2008 by the American Pain Society.
Resumo:
Noxious stimulation of the leg increases hind limb blood flow (HBF) to the ipsilateral side and decreases to the contralateral in rat. Whether or not this asymmetrical response is due to direct control by sympathetic terminals or mediated by other factors such as local metabolism and hormones remains unclear. The aim of this study was to compare responses in lumbar sympathetic nerve activity, evoked by stimulation of the ipsilateral and contralateral sciatic nerve (SN). We also sought to determine the supraspinal mechanisms involved in the observed responses. In anesthetized and paralyzed rats, intermittent electrical stimulation (1 mA, 0.5 Hz) of the contralateral SN evoked a biphasic sympathoexcitation. Following ipsilateral SN stimulation, the response is preceded by an inhibitory potential with a latency of 50 ms (N=26). Both excitatory and inhibitory potentials are abolished following cervical Cl spinal transection (N=6) or bilateral microinjections of muscimol (N=6) in the rostral ventrolateral medulla (RVLM). This evidence is suggestive that both sympathetic potentials are supraspinally mediated in this nucleus. Blockade of RVLM glutamate receptors by microinjection of kynurenic acid (N=4) selectively abolished the excitatory potential elicited by ipsilateral SN stimulation. This study supports the physiological model that activation of hind limb nociceptors evokes a generalized sympathoexcitation, with the exception of the ipsilateral side where there is a withdrawal of sympathetic tone resulting in an increase in HBF. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
The behavioral effects of the K-opioid receptor agonist U69593 were examined in lactating rats. On day 5 of lactation, animals were treated with 0.1 mg/kg of U69593 to determine whether it influences general activity and maternal latencies toward pups. Because little attention has been given to the possibility that pre-mating treatment with morphine may modulate the response to K-opioid receptor stimulation, another group of animals was submitted to the same acute challenge after abrupt withdrawal from repeated treatment with morphine sulfate during the pre-mating period (5 mg/kg on alternate days for a total of five doses). Acute F;opioid stimulation reduced total locomotion, rearing frequency, and time spent self-grooming and increased immobility duration. These K agonist effects were not observed in animals pretreated with morphine. Similarly, latencies to retrieve pups were longer only in animals pretreated with saline and challenged acutely with U69593. None of these effects were observed in morphine sulfate-pretreated animals. The present results suggest that pre-mating repeated exposure to morphine produces a tolerance-like effect on behavioral responses to low-dose K-opioid receptor stimulation in active reproductive females. (c) 2008 Elsevier Inc. All rights reserved.