121 resultados para Blends and mechanical properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Milkfat-soybean oil blends were enzymatically interesterified (EIE) by Aspergillus niger lipase immobilized on SiO(2)-PVA hybrid composite in a solvent free system. An experimental mixture design was used to study the effects of binary blends of milkfat-soybean oil (MF:SBO) at different proportions (0:100; 25:75; 33:67; 50:50; 67:33; 75:25; 100:0) on the compositional and textural properties of the EIE products, considering, as response variables, the interesterification yield (IY), consistency and hardness. Lipase-catalysed interesterification reactions increased the relative proportion of TAGs` C(46)-C(52) and decreased the TAGs` C(40)-C(42) and C(54) concentrations. The highest IY was attained (10.8%) for EIE blend of MF:SBO 67:33 resulting in a more spreadable material at refrigerator temperature in comparison with butter, milkfat or non-interesterified (NIE) blend. In this case, consistency and hardness values were at least 32% lower than values measured for butter. Thus, using A. niger lipase immobilized on SiO(2)-PVA improves the textural properties of milkfat and has potential for development of a product incorporating unsaturated and essential fatty acids from soybean oil. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mortar is the material responsible for the distribution of stresses in masonry structures. The knowledge about the fresh and hardened properties of mortar is fundamental to ensure a good performance of masonry walls. Water/cement ratio and aggregates grading are among several variables that influence physical and mechanical behaviour of mortars. An experimental program is presented in order to evaluate the influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Eighteen compositions of mortar are prepared using three relations cement:lime:sand, two types of sand and three water/cement ratios. Specimens are analyzed through flow table test, compressive and flexural strength tests. Results indicate that the increase of water/cement ratio reduces the values of hardened properties and increases the workability. Besides, sands grading has no influence in compressive strength. On the other hand, significant differences in deformation capacity of mortars were verified with the variation of the type of sand. Finally, some correlations are presented among hardened properties and the compressive strength. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a computational tool concerning the computation of flexural and fracture toughness of cement based composites is presented. Firstly, RILEM`s (Reunion Internationale des Laboratoires d`Essais de Materiaux) recommendations related to the analysis of FRC in three-point bend tests are discussed in their relevant aspects regarding the computational implementations. The determination of other mechanical properties such as the Young modulus has been added to the program. Taking this into account, a new formulation based on displacements is used. In the second part of the paper, the determination of fracture properties of concrete, such as the fracture energy, G(F) , and the fracture toughness, K-IC(S), is discussed regarding the computational strategies used in the implementations. Several features whereby anterior data can be reanalyzed, obtained from other standards and recommendations, have been incorporated into the program, therefore allowing comparative studies and back analysis activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of soybean oil (SO) and fully hydrogenated soybean oil (FHSBO), with 10, 20, 30, 40, and 50% (w/w) FHSBO content were interesterified under the following conditions: 20 min reaction time, 0.4% sodium methoxide catalyst, and 500 rpm stirring speed, at 100 A degrees C. The original and interesterified blends were examined for triacylglycerol composition, thermal behavior, microstructure, crystallization kinetics, and polymorphism. Interesterification produced substantial rearrangement of the triacylglycerol species in all the blends, reduction of trisaturated triacylglycerol content and increase in monounsaturated-disaturated and diunsaturated-monosaturated triacylglycerols. Evaluation of thermal behavior parameters showed linear relations with FHSBO content in the original blends. Blend melting and crystallization thermograms were significantly modified by the randomization. Interesterification caused significant reductions in maximum crystal diameter in all blends, in addition to modifying crystal morphology. Characterization of crystallization kinetics revealed that crystal formation induction period (tau (SFC)) and maximum solid fat content (SFC(max)) were altered according to FHSBO content in the original blends and as a result of the random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that-as compared with the original blends-interesterification decreased crystallization velocities and modified crystallization processes, altering crystalline morphology and nucleation mechanism. X-ray diffraction analyses revealed that interesterification altered crystalline polymorphism. The interesterified blends showed a predominance of the beta` polymorph, which is of more interest for food applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Experimental study idealized to investigate the mechanical properties of deep flexor tendons of rabbits that underwent the tenotomy followed by tenorrhaphy and early application of therapeutic ultrasound with different intensities, in comparison to tendons submitted to tenorrhaphy only. Material and Method: Forty-four rabbits were divided into four experimental groups according to the ultrasound application. They were all submitted to a section of deep flexor tendon in zone 2 and immobilized with an orthosis maintained throughout the experiment. Group A received ultrasonic treatment with an intensity of 1.4 W/cm(2), group B with 0.6 W/cm(2), both in continuous mode, group C with 0.6 W/cm(2) SATA, in pulsated mode at 50% and group D did not receive any ultrasonic treatment. The ultrasonic frequency employed was 1 MHz. After euthanasia, the tendons were dissected and submitted to the mechanical test of traction and qualitative histological analysis. The evaluated mechanical properties were: maximum force, deformation in maximum force and stiffness. Results: There were no statistically significant differences among the experimental groups. Conclusion: Therapeutic ultrasound did not improve the mechanical properties of the flexor tendons after repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Mechanical properties (MP) are clinically applicable tools for healthcare professionals working on the musculoskeletal system. Objectives: The aim of this study was to evaluate two protocols of neuromuscular electric stimulation (NMES) to improve MP regeneration of the myotendinous complex after segment immobilization in female rats. Materials and Methods: Fifty animals were equally distributed into five groups: Control (CG, n=10); Immobilized (IG, n=10); Immobilized and freely remobilized (IFG, n=10); Immobilized and NMES once/day (IEG1, n=10); Immobilized and MNES twice/day (IEG2, n=10). Immobilization was kept for 14 days, and remobilization was subsequently released for 10 days. NMES was applied for 10 days, post-immobilization, every morning for 10 minutes to IEG1 animals and every morning and afternoon (total 20 minutes) to the IEG2 group. After these procedures, the gastrocnemius muscle was submitted to the mechanical traction assay to evaluate stiffness, resilience, load and stretching at maximum limit MPs. Results: Immobilization reduced the MP values concerning load and stiffness (p 0.05). Results for NMES applied twice a day were less satisfactory than the ones obtained with one application or in the remobilized group (p>0.05). Conclusion: It is concluded that the gastrocnemius muscle became structurally better organized through a single NMES application and by remobilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: This study evaluated mechanical properties of glass ionomer cements (GICs) used for atraumatic restorative treatment. Wear resistance, Knoop hardness (Kh), flexural (F(s)) and compressive strength (C(s)) were evaluated. The GICs used were Riva Self Cure (RVA), Fuji IX (FIX), Hi Dense (HD), Vitro Molar (VM), Maxxion R (MXR) and Ketac Molar Easymix (KME). Methods: Wear was evaluated after 1, 4, 63 and 365 days. Two-way ANOVA and Tukey post hoc tests (P = 0.05) analysed differences in wear of the GICs and the time effect. F(s), C(s), and Kh were analysed with one-way ANOVA. Results: The type of cement (p < 0.001) and the time (p < 0.001) had a significant effect on wear. In early-term wear and Kh, KME and FIX presented the best performance. In long-term wear, F(s) and C(s), KME, FIX and HD had the best performance. Strong explanatory power between F(s) and the Kh (r(2) = 0.85), C(s) and the Kh (r(2) = 0.82), long-term wear and F(s) of 24 h (r(2) = 0.79) were observed. Conclusions: The data suggested that KME and FIX presented the best in vitro performance. HD showed good results except for early-term wear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the influence of different ion-exchange temperatures on the biaxial flexural strength (sigma(f)), hardness (HV) and indentation fracture resistance (K(IF)) of a dental porcelain. Disk-shaped specimens were divided into five groups (n = 10) and submitted to an ion-exchange procedure using KNO(3) paste for 15 min in the following temperatures (degrees C); (I) 430; (II) 450; (III) 470; (IV) 490; (V) 510; and control (no ion exchange). The value of sigma(f) was determined in artificial saliva at 37 degrees C. The values of HV and K(IF) were obtained using 3 Vickers indentations in each specimen (19.6 N). Results showed that ion exchange increases significantly the properties of the material as compared to the control and no significant differences were found among the temperatures tested for any of the properties studied. (C) 2010 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. The aim of this study was to evaluate the influence of monomer content on fracture toughness (K(Ic)) before and after ethanol solution storage, flexural properties and degree of conversion (DC) of bisphenol A glycidyl methacrylate (Bis-GMA) co-polymers. Methods. Five formulations were tested, containing Bis-GMA (B) combined with TEGDMA (T), UDMA (U) or Bis-EMA (E), as follows (in mol%): 30B:70T; 30B:35T:35U; 30B:70U; 30B:35T:35E; 30B:70E. Bimodal filler was introduced at 80 wt%. Single-edge notched beams for fracture toughness (FT, 25 mm x 5 mm x 2.5 mm, a/w = 0.5, n = 20) and 10 mm x 2 mm x 1 mm beams for flexural strength (FS) and modulus (FM) determination (10 mm x 2 mm x 1 mm, n = 10) were built and then stored in distilled water for 24 h at 37 degrees C. All FS/FM beams and half of the FT specimens were immediately submitted to three-point bending test. The remaining FT specimens were stored in a 75%ethanol/25%water (v/v) solution for 3 months prior to testing. DC was determined with FT-Raman spectroscopy in fragments of both FT and FS/FM specimens at 24 h. Data were submitted to one-way ANOVA/Tukey test (alpha = 5%). Results. The 30B:70T composite presented the highest K(Ic) value (in MPa m(1/2)) at 24 h (1.3 +/- 0.4), statistically similar to 30B:35T:35U and 30B:70U, while 30B:70E presented the lowest value (0.5 +/- 0.1). After ethanol storage, reductions in K(Ic) ranged from 33 to 72%. The 30B:70E material presented the lowest reduction in FT and 30B:70U, the highest. DC was similar among groups (69-73%), except for 30B:70U (52 +/- 4%, p < 0.001). 30B:70U and 30B:35T:35U presented the highest FS (125 +/- 21 and 122 +/- 14 MPa, respectively), statistically different from 30B:70T or 30B:70E (92 +/- 20 and 94 +/- 16 MPa, respectively). Composites containing UDMA or Bis-EMA associated with Bis-GMA presented similar FM, statistically lower than 30B:35T:35U. Significance. Composites formulated with Bis-GMA:TEGDMA:UDMA presented the best compromise between conversion and mechanical properties. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study evaluated the effect of different concentrations of ethanol on hardness, roughness, flexural strength, and color stability of a denture base material using a microwave-processed acrylic resin as a model system. Materials and Methods: Sixty circular (14 x 4 mm) and 60 rectangular microwave-polymerized acrylic resin specimens (65 x 10 x 3 mm(3)) were employed in this study. The sample was divided into six groups according to the ethanol concentrations used in the immersion solution, as follows: 0% (water), 4.5%, 10%, 19%, 42%, and 100%. The specimens remained immersed for 30 days at 37 degrees C. The hardness test was performed by a hardness tester equipped with a Vickers diamond penetrator, and a surface roughness tester was used to measure the surface roughness of the specimens. Flexural strength testing was carried out on a universal testing machine. Color alterations (Delta E) were measured by a portable spectrophotometer after 12 and 30 days. Variables were analyzed by ANOVA/Tukey`s test (alpha = 0.05). Results: For the range of ethanol-water solutions for immersion (water only, 4.5%, 10%, 19.5%, 42%, and 100%), the following results were obtained for hardness (13.9 +/- 2.0, 12.1 +/- 0.7, 12.9 +/- 0.9, 11.2 +/- 1.5, 5.7 +/- 0.3, 2.7 +/- 0.5 VHN), roughness (0.13 +/- 0.01, 0.15 +/- 0.07, 0.13 +/- 0.05, 0.13 +/- 0.02, 0.23 +/- 0.05, 0.41 +/- 0.19 mu m), flexural strength (90 +/- 12, 103 +/- 18, 107 +/- 16, 90 +/- 25, 86 +/- 22, 8 +/- 2 MPa), and color (0.8 +/- 0.6, 0.8 +/- 0.3, 0.7 +/- 0.4, 0.9 +/- 0.3, 1.3 +/- 0.3, 3.9 +/- 1.5 Delta E) after 30 days. Conclusions: The findings of this study showed that the ethanol concentrations of tested drinks affect the physical properties of the investigated acrylic resin. An obvious plasticizing effect was found, which could lead to a lower in vivo durability associated with alcohol consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ni-Zn ferrites have been widely used in components for high-frequency range applications due to their high electrical resistivity, mechanical strength and chemical stability. Ni-Zn ferrite nanopowders doped with samarium with a nominal composition of Ni0.5Zn0.5Fe2-xSmxO4 (x = 0.0, 0.05, and 0.1 mol) were obtained by combustion synthesis using nitrates and urea as fuel. The morphological aspects of Ni-Zn-Sm ferrite nanopowders were investigated by X-ray diffraction, nitrogen adsorption by BET, sedimentation, scanning electron microscopy and magnetic properties. The results indicated that the Ni-Zn-Sm ferrite nanopowders were composed of soft agglomerates of nanoparticles with a high surface area (55.8-64.8 m(2)/g), smaller particles (18-20 nm) and nanocrystallite size particles. The addition of samarium resulted in a reduction of all the magnetic parameters evaluated, namely saturation magnetization (24-40 emu/g), remanent magnetization (2.2-3.5 emu/g) and coercive force (99.3-83.3 Oe). (c) 2007 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic and optical properties of andalusite were studied by using quantum-mechanical calculations based on the density functional theory (DFT). The electronic structure shows that andalusite has a direct band gap of 5.01 eV. The complex dielectric function and optical constants, such as extinction coefficient, refractive index, reflectivity and energy-loss spectrum, are calculated. The optical properties of andalusite are discussed based on the band structure calculations. It is shown that the O-2p states and Al-3s states play a major role in optical transitions as initial and final states, respectively. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barium molybdate (BaMoO(4)) powders were synthesized by the co-precipitation method and processed in microwave-hydrothermal at 140 degrees C for different times. These powders were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) absorption spectroscopies and photoluminescence (PL) measurements. XRD patterns and FT-Raman spectra showed that these powders present a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 850.4 cm(-1), which is associated to the Mo-O antisymmetric stretching vibrations into the [MoO(4)] clusters. UV-vis absorption spectra indicated a reduction in the intermediary energy levels within band gap with the processing time evolution. First-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the electronic structure (band structure and density of states) of this material. The powders when excited with different wavelengths (350 nm and 488 nm) presented variations. This phenomenon was explained through a model based in the presence of intermediary energy levels (deep and shallow holes) within the band gap. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum mechanical calculations at the B3LYP theory level, together with the 6-31G* basis set, were employed to obtain the energy, ionization potential, and polarizabilites for dipyridamole and derivatives, which are compared with their biological activity. Density functional calculations of the spin densities were performed for radical formed by electron abstraction of dipyridamole and derivatives. The unpaired electron remains in dipyridamole is localized on the nitrogen atoms in the substituent positions 1, 3, 5, 7, 11, 12, 13, 14, with participation of the 9 and 10 carbons in the pyrimido-pyrimidine ring. The antioxidant activity is related with ionization potential, polarizability and Log P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of chemical and mechanical surface treatments for cast metal alloys on the bond strength of an indirect composite resin (Artglass) to commercially pure titanium (cpTi). Thirty cylindrical metal rods (3 mm diameter x 60 mm long) were cast in grade-1 cpTi and randomly assigned to 6 groups (n=5) according to the received surface treatment: sandblasting; chemical treatment; mechanical treatment - 0.4 mm beads; mechanical treatment - 0.6 mm beads; chemical/mechanical treatment - 0.4 mm; and chemical/mechanical treatment - 0.6 mm beads. Artglass rings (6.0 mm diameter x 2.0 mm thick) were light cured around the cpTi rods, according manufacturer's specifications. The specimens were invested in hard gypsum and their bond strength (in MPa) to the rods was measured at fracture with a universal testing machine at a crosshead speed of 2.0 mm/min and 500 kgf load cell. Data were analyzed statistically by one-way ANOVA and Tukey test (a=5%). The surface treatments differed significantly from each other (p<0.05) regarding the recorded bond strengths. Chemical retention and sandblasting showed statistically similar results to each other (p=0.139) and both had significantly lower bond strengths (p<0.05) than the other treatments. In conclusion, mechanical retention, either associated or not to chemical treatment, provided higher bond strength of the indirect composite resin to cpTi.