122 resultados para Adoptive T Cell Therapy
Resumo:
Background: Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies in humans. The average 5-year survival rate is one of the lowest among aggressive cancers, showing no significant improvement in recent years. When detected early, HNSCC has a good prognosis, but most patients present metastatic disease at the time of diagnosis, which significantly reduces survival rate. Despite extensive research, no molecular markers are currently available for diagnostic or prognostic purposes. Methods: Aiming to identify differentially-expressed genes involved in laryngeal squamous cell carcinoma (LSCC) development and progression, we generated individual Serial Analysis of Gene Expression (SAGE) libraries from a metastatic and non-metastatic larynx carcinoma, as well as from a normal larynx mucosa sample. Approximately 54,000 unique tags were sequenced in three libraries. Results: Statistical data analysis identified a subset of 1,216 differentially expressed tags between tumor and normal libraries, and 894 differentially expressed tags between metastatic and non-metastatic carcinomas. Three genes displaying differential regulation, one down-regulated (KRT31) and two up-regulated (BST2, MFAP2), as well as one with a non-significant differential expression pattern (GNA15) in our SAGE data were selected for real-time polymerase chain reaction (PCR) in a set of HNSCC samples. Consistent with our statistical analysis, quantitative PCR confirmed the upregulation of BST2 and MFAP2 and the downregulation of KRT31 when samples of HNSCC were compared to tumor-free surgical margins. As expected, GNA15 presented a non-significant differential expression pattern when tumor samples were compared to normal tissues. Conclusion: To the best of our knowledge, this is the first study reporting SAGE data in head and neck squamous cell tumors. Statistical analysis was effective in identifying differentially expressed genes reportedly involved in cancer development. The differential expression of a subset of genes was confirmed in additional larynx carcinoma samples and in carcinomas from a distinct head and neck subsite. This result suggests the existence of potential common biomarkers for prognosis and targeted-therapy development in this heterogeneous type of tumor.
Resumo:
Polylactic-co-glycolic nanocapsules, loaded with nanosized magnetic particles and Selol (a selenium-based anticancer drug), were successfully prepared by the precipitation method. Maghemite (gamma-Fe(2)O(3)) nanoparticles were incorporated into the nanocapsules using a highly stable ionic magnetic fluid sample. The obtained nanocapsules presented no agglomeration, negative surface charge while revealing a narrow monomodal size distribution. All the nanocapsule formulations exhibited a good physical stability at 4 degrees C during 3 month storage period. The in vitro antitumoral activity of Selol-magnetic nanocapsules was assessed using a murine melanoma cell line. The influence of nanocapsules on cell viability was investigated by spectrophotometric assay. The results demonstrated that Selol-loaded magnetic nanocapsules (at 100 mu g/ml/5 x 10(9) particle/ml) showed antitumoral activity of 50% on melanoma cells (absence of magnetic field). These results clearly indicate that the loaded nanocapsules represent a novel and promising magnetic drug delivery system suitable for cancer treatment via the active drug and magnetohyperthermia. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3556950]
Resumo:
We report the first quantitative and qualitative analysis of the poly (A)(+) transcriptome of two human mammary cell lines, differentially expressing (human epidermal growth factor receptor) an oncogene over-expressed in approximately 25% of human breast tumors. Full-length cDNA populations from the two cell lines were digested enzymatically, individually tagged according to a customized method for library construction, and simultaneously sequenced by the use of the Titanium 454-Roche-platform. Comprehensive bioinformatics analysis followed by experimental validation confirmed novel genes, splicing variants, single nucleotide polymorphisms, and gene fusions indicated by RNA-seq data from both samples. Moreover, comparative analysis showed enrichment in alternative events, especially in the exon usage category, in ERBB2 over-expressing cells, data indicating regulation of alternative splicing mediated by the oncogene. Alterations in expression levels of genes, such as LOX, ATP5L, GALNT3, and MME revealed by large-scale sequencing were confirmed between cell lines as well as in tumor specimens with different ERBB2 backgrounds. This approach was shown to be suitable for structural, quantitative, and qualitative assessment of complex transcriptomes and revealed new events mediated by ERBB2 overexpression, in addition to potential molecular targets for breast cancer that are driven by this oncogene.
Resumo:
Clinical trials using dendritic cells (DCs) to treat cancer patients have generated promising results in recent years. However, even simple aspects of this therapy are still not well understood, including the storage and distribution of manufactured vaccines. These processes are essential and must be elucidated in order to reduce costs. We evaluated the effects of different storage conditions on vaccine functionality using mixed lymphocyte reaction (MLR). Vaccine storage at 4 degrees C for up to 72 h had no significant effect on vaccine activity. Shipping to distant places is possible, if vaccines are kept at 4 degrees C and used up to 3 days after manufacture date.
Resumo:
Background: mRNAs are highly versatile, non-toxic molecules that are easy to produce and store, which can allow transient protein expression in all cell types. The safety aspects of mRNA-based treatments in gene therapy make this molecule one of the most promising active components of therapeutic or prophylactic methods. The use of mRNA as strategy for the stimulation of the immune system has been used mainly in current strategies for the cancer treatment but until now no one tested this molecule as vaccine for infectious disease. Results: We produce messenger RNA of Hsp65 protein from Mycobacterium leprae and show that vaccination of mice with a single dose of 10 mu g of naked mRNA-Hsp65 through intranasal route was able to induce protection against subsequent challenge with virulent strain of Mycobacterium tuberculosis. Moreover it was shown that this immunization was associated with specific production of IL-10 and TNF-alpha in spleen. In order to determine if antigen presenting cells (APCs) present in the lung are capable of capture the mRNA, labeled mRNA-Hsp65 was administered by intranasal route and lung APCs were analyzed by flow cytometry. These experiments showed that after 30 minutes until 8 hours the populations of CD11c(+), CD11b(+) and CD19(+) cells were able to capture the mRNA. We also demonstrated in vitro that mRNA-Hsp65 leads nitric oxide (NO) production through Toll-like receptor 7 (TLR7). Conclusions: Taken together, our results showed a novel and efficient strategy to control experimental tuberculosis, besides opening novel perspectives for the use of mRNA in vaccines against infectious diseases and clarifying the mechanisms involved in the disease protection we noticed as well.
Resumo:
Background Data and Objective: Oral mucositis (OM) is one of the worst cytotoxic effects of chemotherapy and radiotherapy in patients undergoing hematopoietic cell transplantation (HCT), and it causes severe morbidity. Laser phototherapy has been considered as an alternative therapy for prevention and treatment of OM. The aim of this study was to describe the incidence and severity of OM in HCT patients subjected to laser phototherapy, and to discuss its effect on the oral mucosa. Patients and Methods: Information concerning patient age and gender, type of basic disease, conditioning regimen, type of transplant, absence or presence of pain related to the oral cavity, OM grade, and adverse reactions or unusual events were collected from 30 patients undergoing HCT (allogeneic or autologous). These patients were given oral laser phototherapy with a InGaAIP laser (660 nm and 40 mW) daily. The data were tabulated and their frequency expressed as percentages. Results: In the analysis of those with OM, it was observed that 33.4% exhibited grade I, 40% grade II, 23.3% grade III, and 3.3% grade IV disease. On the most critical post-HCT days (D+5 and D+8), it was observed that 63.3% of patients had grade I and 33.3% had grade II disease; no patients had grade III or IV disease in this period. This severity of OM was similar to that seen in other studies of laser phototherapy and OM. Conclusion: The low grades of OM observed in this survey show the beneficial effects of laser phototherapy, but randomized clinical trials are necessary to confirm these findings.
Resumo:
Objectives: To describe the microscopic pulpal reactions resulting from orthodontically induced tooth movement associated with low-level laser therapy (LLLT) in rats. Materials and Methods: Forty-five young male Wistar rats were randomly assigned to three groups. In group I (n = 20), the maxillary right first molars were submitted to orthodontic movement with placement of a coil spring. In group II (n = 20), the teeth were submitted to orthodontic movement plus LLLT at 4 seconds per point (buccal, palatal, and mesial) with a GaAlAs diode laser source (830 nm, 100 mW, 18 J/cm(2)). Group III (n = 5) served as a control (no orthodontic movement or LLLT). Groups I and 11 were divided into four subgroups according to the time elapsed between the start of tooth movement and sacrifice (12 hours, 24 hours, 3 days, and 7 days). Results: Up until the 3-day period, the specimens in group I presented a thicker odontoblastic layer, no cell-free zone of Weil, pulp core with differentiated mesenchymal and defense cells, and a high concentration of blood vessels. In group II, at the 12- and 24-hour time points, the odontoblastic layer was disorganized and the cell-free zone of Weil was absent, presenting undifferentiated cells, intensive vascularization with congested capillaries, and scarce defense cells in the cell-rich zone. In groups I and II, pulpal responses to the stimuli were more intense in the area underneath the region of application of the force or force/laser. Conclusions: The orthodontic-induced tooth movement and LLLT association showed reversible hyperemia as a tissue response to the stimulus. LLLT leads to a faster repair of the pulpal tissue due to orthodontic movement. (Angle Orthod. 2010;80:116-122.)
Resumo:
Background and Objective: Impaired cell metabolism and increased cell death in fibroblast cells are physiological features of chronic tendinopathy. Although several studies have shown that low-level laser therapy (LLLT) at certain parameters has a biostimulatory effect on fibroblast cells, it remains uncertain if LLLT effects depend on the physiological state. Study Design/Material and Methods: High-metabolic immortal cell culture and primary human keloid fibroblast cell culture were used in this study. Trypan blue exclusion and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test were used to determine cell viability and proliferation. Propidium iodide stain was used for cell-cycle analysis by flow cytometry. Laser irradiation was performed daily on three consecutive days with a GaAlAs 660-nm laser (mean output: 50 mW, spot size 2 mm(2), power density = 2.5 W/cm(2)) and a typical LLLT dose and a high LLLT dose (irradiation times: 60 or 420 s; fluences: 150 or 1050 J/cm(2); energy delivered: 3 or 21 J). Results: Primary fibroblast cell culture from human keloids irradiated with 3 J showed significant proliferation by the trypan blue exclusion test (p < 0.05), whereas the 3T3 cell culture showed no difference using this method. Propidium iodide staining flow cytometry data showed a significant decrease in the percentage of cells being in proliferative phases of the cell cycle (S/g(2)/M) when irradiated with 21 J in both cell types (hypodiploid cells increased). Conclusions: Our data support the hypothesis that the physiological state of the cells affects the LLLT results, and that high-metabolic rate and short-cell-cycle 3T3 cells are not responsive to LLLT. In conclusion, LLLT with a dose of 3 J reduced cell death significantly, but did not stimulate cell cycle. A LLLT dose of 21 J had negative effects on the cells, as it increased cell death and inhibited cell proliferation.
Resumo:
Background: The metastatic disease rather than the primary tumor itself is responsible for death in most solid tumors, including breast cancer. The role of matrix metalloproteinases ( MMPs), tissue inhibitors of MMPs (TIMPs) and Reversion-inducing cysteine-rich protein with Kazal motifs ( RECK) in the metastatic process has previously been established. However, in all published studies only a limited number of MMPs/MMP inhibitors was analyzed in a limited number of cell lines. Here, we propose a more comprehensive approach by analyzing the expression levels of several MMPs (MMP-2, MMP-9 and MMP-14) and MMP inhibitors (TIMP-1, TIMP-2 and RECK) in different models ( five human breast cancer cell lines, 72 primary breast tumors and 30 adjacent normal tissues). Methods: We analyzed the expression levels of MMP-2, MMP-9 and MMP-14 and their inhibitors (TIMP-1, TIMP-2 and RECK) by quantitative RT-PCR (qRT-PCR) in five human breast cancer cell lines presenting increased invasiveness and metastatic potential, 72 primary breast tumors and 30 adjacent normal tissues. Moreover, the role of cell-extracellular matrix elements interactions in the regulation of expression and activity of MMPs and their inhibitors was analyzed by culturing these cell lines on plastic or on artificial ECM (Matrigel). Results: The results demonstrated that MMPs mRNA expression levels displayed a positive and statistically significant correlation with the transcriptional expression levels of their inhibitors both in the cell line models and in the tumor tissue samples. Furthermore, the expression of all MMP inhibitors was modulated by cell-Matrigel contact only in highly invasive and metastatic cell lines. The enzyme/inhibitor balance at the transcriptional level significantly favors the enzyme which is more evident in tumor than in adjacent non-tumor tissue samples. Conclusion: Our results suggest that the expression of MMPs and their inhibitors, at least at the transcriptional level, might be regulated by common factors and signaling pathways. Therefore, the multi-factorial analysis of these molecules could provide new and independent prognostic information contributing to the determination of more adequate therapy strategies for each patient.`
Resumo:
BACKGROUND: Guidelines for red blood cell (RBC) transfusions exist; however, transfusion practices vary among centers. This study aimed to analyze transfusion practices and the impact of patients and institutional characteristics on the indications of RBC transfusions in preterm infants. STUDY DESIGN AND METHODS: RBC transfusion practices were investigated in a multicenter prospective cohort of preterm infants with a birth weight of less than 1500 g born at eight public university neonatal intensive care units of the Brazilian Network on Neonatal Research. Variables associated with any RBC transfusions were analyzed by logistic regression analysis. RESULTS: Of 952 very-low-birth-weight infants, 532 (55.9%) received at least one RBC transfusion. The percentages of transfused neonates were 48.9, 54.5, 56.0, 61.2, 56.3, 47.8, 75.4, and 44.7%, respectively, for Centers 1 through 8. The number of transfusions during the first 28 days of life was higher in Center 4 and 7 than in other centers. After 28 days, the number of transfusions decreased, except for Center 7. Multivariate logistic regression analysis showed higher likelihood of transfusion in infants with late onset sepsis (odds ratio [OR], 2.8; 95% confidence interval [CI], 1.8-4.4), intraventricular hemorrhage (OR, 9.4; 95% CI, 3.3-26.8), intubation at birth (OR, 1.7; 95% CI, 1.0-2.8), need for umbilical catheter (OR, 2.4; 95% CI, 1.3-4.4), days on mechanical ventilation (OR, 1.1; 95% CI, 1.0-1.2), oxygen therapy (OR, 1.1; 95% CI, 1.0-1.1), parenteral nutrition (OR, 1.1; 95% CI, 1.0-1.1), and birth center (p < 0.001). CONCLUSIONS: The need of RBC transfusions in very-low-birth-weight preterm infants was associated with clinical conditions and birth center. The distribution of the number of transfusions during hospital stay may be used as a measure of neonatal care quality.
Resumo:
Pothomorphe umbellata, a native Brazilian plant, is popularly known to be effective in the treatment of skin lesions. This benefit is attributed to 4-nerolidylcatechol (4-NC) a compound extracted from P. umbellata. Since melanomas show prominent resistance to apoptosis and exhibit extreme chemoresistance to multiple forms of therapy, novel compounds addressing induction of cell death are worth investigating. Here, we evaluated effects on cell cycle progression and possible cytotoxic activity of 4-NC in melanoma cell lines as well as human dermal fibroblasts. Inhibitory effects on cell invasion and MMP activity were also investigated. 4-NC showed cytotoxic activity for all melanoma cell lilies tested (IC(50) = 20-40 mu M, 24 h for tumoral cell lines: IC(50) = 50 mu M for fibroblast cell line) associated with its capacity to induce apoptosis. Furthermore, this is the first time that 4-NC is described as an inhibitor of cell invasiveness, due mainly to a G I cell cycle arrest and inhibition of MMP-2 activity in melanoma cell lines. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Mast Cells (MCs) express toll-like receptor 2 (TLR2), a receptor known to be triggered by several major mycobacterial ligands and involved in resistance against Mycobacterium tuberculosis (MTB) infection. This study investigated whether adoptive transfer of TLR2 positive MCs (TLR2(+/+)) corrects the increased susceptibility of TLR2(-/-) mice to MTB infection. TLR2(-/-) mice displayed increased mycobacterial burden, diminished myeloid cell recruitment and proinflammatory cytokine production accompanied by defective granuloma formation. The reconstitution of these mice with TLR2(+/+) MCs, but not TLR2(-/-), confers better control of the infection, promotes the normalization of myeloid cell recruitment associated with reestablishment of the granuloma formation. In addition, adoptive transfer of TLR2(+/+) MC to TLR2(-/-) mice resulted in regulation of the pulmonary levels of IL-beta, IL-6, TNF-alpha, enhanced Th1 response and activated CD8(+) T cell homing to the lungs. Our results suggest that activation of MCs via TLR2 is required to compensate the defect in protective immunity and inability of TLR2(-/-) mice to control MTB infection. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
In this paper we describe the efficacy of the liposomal-AlClPc (aluminum-chloro-phthalocyanine) formulation in PDT study against Ehrlich tumor cells proliferation in immunocompetent swiss mice tongue. Experiments were conduced in sixteen tumor induced mice that were divided in three control groups: (1) tumor without treatment; (2) tumor with 100 J/cm(2) laser (670 nm) irradiation; and (3) tumor with AlClPc peritumoral injection; and a PDT experimental group when tumors received AlClPc injection followed by tumor irradiation. Control groups present similar macroscopically and histological patterns after treatments, while PDT treatment induced 90% of Ehrlich tumor necrosis after 24 h of one single showing the efficacy of liposome-AlClPc (aluminum-chloro-phthalocyanine) mediated PDT application, on the treatment of oral cancer. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this study, oral carcinoma cells were used to evaluate chloroaluminum-phthalocyanine encapsulated in liposomes as the photosensitizer agent in support of photodynamic therapy (PDT). The genotoxicity and cytotoxicity behavior of the encapsulated photosensitizer in both dark and under irradiation using the 670-nm laser were investigated with the classical trypan blue cell viability test, the acridine orange/ethidium bromide staining organelles test, micronucleus formation frequency, DNA fragmentation, and cell morphology. The cell morphology investigation was carried out using light and electronic microscopes. Our findings after PDT include reduction in cell viability (95%) associated with morphologic alterations. The neoplastic cell destruction was predominantly started by a necrotic process, according to the assay with acridine orange and ethidium bromide, and this was confirmed by electronic microscopy analysis. Neither the PDT agent nor laser irradiation alone showed cytotoxicity, genotoxicity, or even morphologic alterations. Our results reinforce the efficiency of tight-irradiated chloroaluminum-phthalocyanine in inducing a positive effect of PDT. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Unloaded microspheres were prepared from polyhydroxybutyrate-co-valerate (PHBHV) and poly(epsilon-caprolactone) (PCL) polymers using the emulsification-solvent evaporation method (EE). The study was conducted to determine the ideal polymeric composition and ideal molecular weight for the microspheres preparation to be used as a Drug Delivery System (DDS) for cancer therapy. In this work, NzPC, a new photosensitizer, has been investigated when incorporated into microspheres of PHBHV/PCL evaluating its application for Photodynamic Therapy (PDT) of neoplastic tissue. The biodegradation studies were conducted to analyze the effects of the incorporation of the NzPC and also to determine the release profiles in vitro condition. We also evaluated the dark toxicity and the photobiological effect of the PHBHV-PCL microspheres in cutaneous melanoma cell line (B-16-A1) used as a biological neoplastic medium.