81 resultados para Adenosine diphosphate ribose


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tubercidin (TUB) is an adenosine analog with potent antiparasite action, unfortunately associated with severe host toxicity. Prevention of TUB toxicity can be reached associating nitrobenzylthioinosine (NBMPR), an inhibitor of the purine nucleoside transport, specifically target to the mammal cells. It was demonstrated that this nucleoside transport inhibitor has no significant effect in the in vitro uptake of TUB by Schistosoma mansoni and Trypanosoma gambiense. Seeking to evaluate if the association of these compounds is also effective against leishmania, we analyzed the TUB-NBMPR combined treatment in in vitro cultures of promastigote forms of Leishmania (L.) amazonensis, Leishmania (L.) chagasi, Leishmania (L.) major, and Leishmania (V.) braziliensis as well as in cultures of amastigote forms of L. (L.) amazonensis, mice macrophages infected with L. (L.) amazonensis, and in vivo tests in BALB/c mice infected with L. (L.) amazonensis. We demonstrated that TUB-NBMPR combined treatment can be effective against leishmania cells protecting mammalian cells from TUB toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a considerable interindividual variation in L-thyroxine [ 3,5,3`,5`-tetraiodo-l-thyronine (T(4))] dose required for thyrotropin (thyroid-stimulating hormone) suppression in patients with differentiated thyroid cancer. To investigate whether uridine diphosphate-glucuronosyl transferase 1A1 (UGT1A1)-mediated T(4) glucuronidation in liver affects T(4) dose, we genotyped 101 patients for the common UGT1A1-53(TA)(n) polymorphism and compared T(4) doses among patients having zero (5/6 and 6/6 genotypes), one (6/7 genotype), or two (7/7 and 7/8 genotypes) copies of the low-expression (TA) 7 and (TA) 8 alleles. A significant trend for decreasing T(4) dose with increasing number of copies of (TA)(7) and (TA)(8) (P = 0.037) and significant difference in T(4) dose across the UGT1A1-53(TA)(n) genotypes (P = 0.048) were observed, despite considerable overlap of T(4) doses among different genotypes. These results are consistent with reduced T(4) glucuronidation in patients with low-expression (TA) 7 and (TA) 8 alleles and provide the first evidence for association between UGT1A1-53(TA)(n) and T(4)-dose requirement for thyroid-stimulating hormone suppression in a natural clinical setting. Pharmacogenetics and Genomics 21: 341-343 (C) 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins. Pharmacogenetics and Genomics 2011, 21: 341-343

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Biochemical analysis of fluid is the primary laboratory approach hi pleural effusion diagnosis. Standardization of the steps between collection and laboratorial analyses are fundamental to maintain the quality of the results. We evaluated the influence of temperature and storage time on sample stability. Methods: Pleural fluid from 30 patients was submitted to analyses of proteins, albumin, lactic dehydrogenase (LDH), cholesterol, triglycerides, and glucose. Aliquots were stored at 21 degrees, 4 degrees, and-20 degrees C, and concentrations were determined after 1, 2, 3, 4, 7, and 14 days. LDH isoenzymes were quantified in 7 random samples. Results: Due to the instability of isoenzymes 4 and 5, a decrease in LDH was observed in the first 24 h in samples maintained at -20 degrees C and after 2 days when maintained at 4 degrees C. Aside from glucose, all parameters were stable for up to at least day 4 when stored at room temperature or 4 degrees C. Conclusions: Temperature and storage time are potential preanalytical errors in pleural fluid analyses, mainly if we consider the instability of glucose and LDH. The ideal procedure is to execute all the tests immediately after collection. However, most of the tests can be done in refrigerated sample;, excepting LDH analysis. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Congenital hyperinsulinism (CHI) is a rare pancreatic beta-cell disease of neonates, characterized by inappropriate insulin secretion with severe persistent hypoglycemia, with regard to which many questions remain to be answered, despite the important acquisition of its molecular mechanisms in the last decade. The aim of this study was to examine pancreatic histology, beta-cell proliferation (immunohistochemistry with double staining for Ki-67/insulin), and beta-cell adenosine triphosphate-sensitive potassium channels genes from 11 Brazilian patients with severe medically unresponsive CHI who underwent pancreatectomy. Pancreatic histology and beta-cell proliferation in CHI patients were compared to pancreatic samples from 19 age-matched controls. Ten cases were classified as diffuse form (D-CHI) and 1 as focal form (F-CHI). beta-cell nucleomegaly and abundant cytoplasm were absent in controls and were observed only in D-CHI patients. The Ki-67 labeling index (Ki-67-LI) was used to differentiate the adenomatous areas of the F-CHI case (10.15%) from the ""loose cluster of islets`` found in 2 D-CHI samples (2.29% and 2.43%) and 1 control (1.54%) sample. The Ki-67-LI was higher in the F-CHI adenomatous areas, but D-CHI patients also had significantly greater Ki-67-LI (mean value = 2.41%) than age-matched controls (mean value = 1.87%) (P = 0.009). In this 1st genetic study of CHI patients in Brazil, no mutations or new polymorphisms were found in the 33-37 exons of the ABCC8 gene (SUR1) or in the entire exon of the KCNJ11 gene (Kir 6.2) in 4 of 4 patients evaluated. On the other hand, enhanced beta-cell proliferation seems to be a constant feature in CHI patients, both in diffuse and focal forms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complexity of immunoregulation has focused attention on the CD4(+) T ""suppressor"" regulatory cell (T(reg)), which helps maintain balance between immunity and tolerance. An immunoregulatory T-cell population that upon activation amplifies cellular immune responses was described in murine models more than 30 years ago; however, no study has yet identified a naturally occurring T ""inducer"" cell type. Here, we report that the ectoenzyme CD39/NTPDase1 (ecto-nucleoside triphosphate diphosphohydrolase 1) helps to delineate a novel population of human ""inducer"" CD4(+) T cells (T(ind)) that significantly increases the proliferation and cytokine production of responder T cells in a dose-dependent manner. Furthermore, this unique T(ind) subset produces a distinct repertoire of cytokines in comparison to the other CD4(+) T-cell subsets. We propose that this novel CD4(+) T-cell population counterbalances the suppressive activity of suppressor T(reg) in peripheral blood and serves as a calibrator of immunoregulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and objective: Tuberculosis (TB) and cancer are two of the main causes of pleural effusions which frequently share similar clinical features and pleural fluid profiles. This study aimed to identify diagnostic models based on clinical and laboratory variables to differentiate tuberculous from malignant pleural effusions. Methods: A retrospective study of 403 patients (200 with TB; 203 with cancer) was undertaken. Univariate analysis was used to select the clinical variables relevant to the models composition. Variables beta coefficients were used to define a numerical score which presented a practical use. The performances of the most efficient models were tested in a sample of pleural exudates (64 new cases). Results: Two models are proposed for the diagnosis of effusions associated with each disease. For TB: (i) adenosine deaminase (ADA), globulins and the absence of malignant cells in the pleural fluid; and (ii) ADA, globulins and fluid appearance. For cancer: (i) patient age, fluid appearance, macrophage percentage and presence of atypical cells in the pleural fluid; and (ii) as for (i) excluding atypical cells. Application of the models to the 64 pleural effusions showed accuracy higher than 85% for all models. Conclusions: The proposed models were effective in suggesting pleural tuberculosis or cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ATP acts on cellular membranes by interacting with P2X (ionotropic) and P2Y (metabotropic) receptors. Seven homomeric P2X receptors (P2X(1)-P2X(7)) and seven heteromeric receptors (P2X(1/2), P2X(1/4), P2X(1/5), P2X(2/3), P2X(2/6), P2X(4/6), P2X(4/7)) have been described. ATP treatment of Leydig cells leads to an increase in [Ca(2+)](i) and testosterone secretion, supporting the hypothesis that Ca(2+) signaling through purinergic receptors contributes to the process of testosterone secretion in these cells. Mouse Leydig cells have P2X receptors with a pharmacological and biophysical profile resembling P2X(2). In this work, we describe the presence of several P2X receptor subunits in mouse Leydig cells. Western blot experiments showed the presence of P2X(2), P2X(4), P2X(6), and P2X(7) subunits. These results were confirmed by immunofluorescence. Functional results support the hypothesis that heteromeric receptors are present in these cells since 0.5 mu M ivermectin induced an increase (131.2 +/- 5.9%) and 3 mu M ivermectin a decrease (64.2 +/- 4.8%) in the whole-cell currents evoked by ATP. These results indicate the presence of functional P2X(4) subunits. P2X(7) receptors were also present, but they were non-functional under the present conditions because dye uptake experiments with Lucifer yellow and ethidium bromide were negative. We conclude that a heteromeric channel, possibly P2X(2/4/6), is present in Leydig cells, but with an electrophysiological and pharmacological phenotype characteristic of the P2X(2) subunit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Impaired DNA repair efficiency in systematic lupus erythematosus (SLE) patients has been reported ill some studies, mainly regarding the repair of oxidative damage, but little is known about repair kinetics towards primarily single-stranded DNA breaks. In the present study, we aimed to investigate: (a) the efficiency of SLE peripheral blood leucocytes in repairing DNA damage induced by ionizing radiation and (b) the association of DNA repair gene (XRCC1 Arg399Gln, XRCC3 Thr241Met and XRCC4 Ile401Thr) polymorphisms in SLE patients, considering the whole group, or stratified sub-groups according to clinical and laboratory features. A total of 163 SLE patients and 125 healthy control were studied. The kinetics of DNA strand break repair was evaluated by the comet assay, and genotyping for DNA repair genes was performed by PCR-RFLP. Compared with controls. SLE leucocytes exhibited decreased efficiency of DNA repair evaluated at 30 min following irradiation. A significant association with DNA repair gene polymorphisms was not observed for the whole group of SLE patients; however, the XRCC1Arg399Gln polymorphism was associated with the presence of anti-dsDNA antibody. The concomitance of two DNA repair polymorphic sites was associated with the presence of neuropsychiatric manifestations and antiphospholipid antibody syndrome. Taken together, these results indicated that SLE leucocytes repair less efficiently the radiation-induced DNA damage, and DNA repair polymorphic sites may predispose to the development of particular clinical and laboratory features. Lupus (2008) 17, 988-995.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leptin resistance and desensitization of hypophagia during prolonged inflammatory challenge. Am J Physiol Endocrinol Metab 300: E858-E869, 2011. First published February 22, 2011; doi: 10.1152/ajpendo.00558.2010.-Acute exposure to bacterial lipopolysaccharide (LPS) is a potent inducer of immune response as well as hypophagia. Nevertheless, desensitization of responses to LPS occurs during long-term exposure to endotoxin. We induced endotoxin tolerance, injecting repeated (6LPS) LPS doses compared with single (1LPS) treatment. 1LPS, but not 6LPS group, showed decreased food intake and body weight, which was associated with an increased plasma leptin and higher mRNA expression of OB-Rb, MC4R, and SOCS3 in the hypothalamus. Hypophagia induced by 1LPS was associated with lower levels of 2-arachidonoylglycerol (2-AG), increased number of p-STAT3 neurons, and decreased AMP-activated protein kinase (AMPK) activity. Desensitization of hypophagia in the 6LPS group was related to high 2-AG, with no changes in p-STAT3 or increased p-AMPK. Leptin decreased food intake, body weight, 2-AG levels, and AMPK activity and enhanced p-STAT3 in control rats. However, leptin had no effects on 2-AG, p-STAT3, or p-AMPK in the 1LPS and 6LPS groups. Rats treated with HFD to induce leptin resistance showed neither hypophagia nor changes in p-STAT3 after 1LPS, suggesting that leptin and LPS recruit a common signaling pathway in the hypothalamus to modulate food intake reduction. Desensitization of hypophagia in response to repeated exposure to endotoxin is related to an inability of leptin to inhibit AMPK phosphorylation and 2-AG production and activate STAT3. SOCS3 is unlikely to underlie this resistance to leptin signaling in the endotoxin tolerance. The present model of prolonged inflammatory challenge may contribute to further investigations on mechanisms of leptin resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adenosine deaminase (ADA) deficiency is a disorder of the purine metabolism leading to combined immunodeficiency and systemic alterations, including skeletal abnormalities. We report that ADA deficiency in mice causes a specific bone phenotype characterized by alterations of structural properties and impaired mechanical competence. These alterations are the combined result of an imbalanced receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin axis, causing decreased osteoclastogenesis and an intrinsic defect of osteoblast function with subsequent low bone formation. In vitro, osteoblasts lacking ADA displayed an altered transcriptional profile and growth reduction. Furthermore, the bone marrow microenvironment of ADA-deficient mice showed a reduced capacity to support in vitro and in vivo hematopoiesis. Treatment of ADA-deficient neonatal mice with enzyme replacement therapy, bone marrow transplantation, or gene therapy resulted in full recovery of the altered bone parameters. Remarkably, untreated ADA-severe combined immunodeficiency patients showed a similar imbalance in RANKL/osteoprotegerin levels alongside severe growth retardation. Gene therapy with ADA-transduced hematopoietic stem cells increased serum RANKL levels and children`s growth. Our results indicate that the ADA metabolism represents a crucial modulatory factor of bone cell activities and remodeling. The trials were registered at www.clinicaltrials.gov as #NCT00598481 and #NCT00599781. (Blood. 2009; 114: 3216-3226)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of purinergic and nitrergic mechanisms was evaluated in the caudal nucleus tractus solitarii (cNTS) using awake animals and brainstem slices. In awake animals, ATP (1.25 nmol/50 nL) was microinjected into the cNTS before and after the microinjection of a selective neuronal nitric oxide synthase (nNOS) inhibitor N-propyl-L-arginine (NPLA, 3 pmoles/50 nL, n=8) or vehicle (saline, n=4), and cardiovascular and ventilatory parameters were recorded. In brainstem slices from a distinct group of rats, the effects of ATP on the NO concentration in the cNTS using the fluorescent dye DAF-2 DA were evaluated. For this purpose brainstem slices (150 pm) containing the cNTS were pre-incubated with ATP (500 mu M; n=8) before and during DAF-2 DA loading. Microinjection of ATP into the cNTS increases the arterial pressure (AP), respiratory frequency (f(R)) and minute ventilation (V(E)), which were significantly reduced by pretreatment with N-PLA, a selective nNOS inhibitor (AP: 39 +/- 3 vs 16 +/- 14 mm Hg; f(R): 75 +/- 14 vs 4 +/- 3 cpm; V(E): 909 159 vs 77 39 mL kg(-1) m(-1)). The effects of ATP in the cNTS were not affected by microinjection of saline. ATP significantly increased the NO fluorescence in the cNTS (62 +/- 7 vs 101 +/- 10 AU). The data show that in the cNTS: a) the NO production is increased by ATP; b) NO formation by nNOS is involved in the cardiovascular and ventilatory responses to microinjection of ATP. Taken together, these data suggest an interaction of purinergic and nitrergic mechanisms in the cNTS. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistance to drug is a major cause of treatment failure in pediatric brain cancer. The multidrug resistance (MDR) phenotype can be mediated by the superfamily of adenosine triphosphate-binding cassette (ABC) transporters. The dynamics of expression of the MDR genes after exposure to chemotherapy, especially the comparison between pediatric brain tumors of different histology, is poorly described. To compare the expression profiles of the multidrug resistance genes ABCB1, ABCC1, and ABCG2 in different neuroepithelial pediatric brain tumor cell lines prior and following short-term culture with vinblastine. Immortalized lineages from pilocytic astrocytoma (R286), anaplasic astrocytoma (UW467), glioblastoma (SF188), and medulloblastoma (UW3) were exposed to vinblastine sulphate at different schedules (10 and 60 nM for 24 and 72 h). Relative amounts of mRNA expression were analyzed by real-time quantitative polymerase chain reaction. Protein expression was assessed by immunohistochemistry for ABCB1, ABCC1, and ABCG2. mRNA expression of ABCB1 increased together with augmenting concentration and time of exposure to vinblastine for R286, UW467, and UW3 cell lines. Interestingly, ABCB1 levels of expression diminished in SF188. Following chemotherapy, mRNA expression of ABCC1 decreased in all cell lines other than glioblastoma. ABCG2 expression was influenced by vinblastine only for UW3. The mRNA levels showed consistent association to protein expression in the selected sets of cell lines analyzed. The pediatric glioblastoma cell line SF188 shows different pattern of expression of multidrug resistance genes when exposed to vinblastine. These preliminary findings may be useful in determining novel strategies of treatment for neuroepithelial pediatric brain tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective. The aim of this study was to assess the effect of cigarette smoke inhalation (CSI) on gene expression in alveolar bone healing sites. Study design. Wistar rats were randomly assigned to the groups: control [animals not exposed to CSI (n = 20)] and test [animals exposed to CSI, starting 3 days before teeth extraction and maintained until killing them (n = 20)]. First mandibular molars were bilaterally extracted, and the expression of alkaline phosphatase, bone morphogenetic protein (BMP) 2 and 7, receptor activator of nuclear factor kappa B ligand, osteoprotegerin, and d2 isoform of vacuolar adenosine triphosphatase V(o) domain were assessed by quantitative polymerase chain reaction in the newly formed tissue in the sockets. Results. Overall, data analysis demonstrated that CSI significantly affected the expression pattern of all of the studied genes except BMP-7. Conclusion. The expression of key genes for bone healing may be affected by CSI in tooth extraction sites. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:447-452)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oocyte maturation is a long process during which oocytes acquire their intrinsic ability to support the subsequent stages of development in a stepwise manner, ultimately reaching activation of the embryonic genome. This process involves complex and distinct, although linked, events of nuclear and cytoplasmic maturation. Nuclear maturation mainly involves chromosomal segregation, whereas cytoplasmic maturation involves organelle reorganization and storage of mRNAs, proteins and transcription factors that act in the overall maturation process, fertilization and early embryogenesis. Thus, for didactic purposes, we subdivided cytoplasmic maturation into: (1) organelle redistribution, (2) cytoskeleton dynamics, and (3) molecular maturation. Ultrastructural analysis has shown that mitochondria, ribosomes, endoplasmic reticulum, cortical granules and the Golgi complex assume different positions during the transition from the germinal vesicle stage to metaphase II. The cytoskeletal microfilaments and microtubules present in the cytoplasm promote these movements and act on chromosome segregation. Molecular maturation consists of transcription, storage and processing of maternal mRNA, which is stored in a stable, inactive form until translational recruitment. Polyadenylation is the main mechanism that initiates protein translation and consists of the addition of adenosine residues to the 3` terminal portion of mRNA. Cell cycle regulators, proteins, cytoplasmic maturation markers and components of the enzymatic antioxidant system are mainly transcribed during this stage. Thus, the objective of this review is to focus on the cytoplasmic maturation process by analyzing the modifications in this compartment during the acquisition of meiotic competence for development. (c) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mu hiding resistance associated protein 2 (Mrp2) is a canalicular transporter responsible for organic anion secretion into bile. Mrp2 activity is regulated by insertion into the plasma membrane; however, the factors that control this are not understood. Calcium (Ca(2+)) signaling regulates exocytosis of vesicles in most cell types, and the type II inositol 1,4,5-triphosphate receptor (InsP(3)R2) regulates Ca(2+) release in the canalicular region of hepatocytes. However, the role of InsP(3)R2 and of Ca(2+) signals in canalicular insertion and function of Mrp2 is not known. The aim of this study was to determine the role of InsP(3)R2-mediated Ca(2+) signals in targeting Mrp2 to the canalicular membrane. Livers, isolated hepatocytes, and hepatocytes in collagen sandwich culture from wild-type (WT) and InsP(3)R2 knockout (KO) mice were used for western blots, confocal immunofluorescence, and time-lapse imaging of Ca(2+) signals and of secretion of a fluorescent organic anion. Plasma membrane insertion of green fluorescent protein (GFP)-Mrp2 expressed in HepG2 cells was monitored by total internal reflection microscopy. InsP(3)R2 was concentrated in the canalicular region of WT mice but absent in InsP(3)R2 KO livers, whereas expression and localization of InsP(3)R1 was preserved, and InsP(3)R3 was absent from both WT and KO livers. Ca(2+) signals induced by either adenosine triphosphate (ATP) or vasopressin were impaired in hepatocytes lacking InsP(3)R2. Canalicular secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was reduced in KO hepatocytes, as well as in WT hepatocytes treated with 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetra-acetic acid (BAPTA). Moreover, the choleretic effect of tauroursodeoxycholic acid (TUDCA) was impaired in InsP(3)R2 KO mice. Finally, ATP increased GFP-Mrp2 fluorescence in the plasma membrane of HepG2 cells, and this also was reduced by BAPTA. Conclusion: InsP(3)R2-mediated Ca(2+) signals enhance organic anion secretion into bile by targeting Mrp2 to the canalicular membrane. (HEPATOLOGY 2010;52:327-337)