47 resultados para AC feeding
Resumo:
Calorie restriction is a dietary intervention known to improve redox state, glucose tolerance, and animal life span. Other interventions have been adopted as study models for caloric restriction, including nonsupplemented food restriction and intermittent, every-other-day feedings. We compared the short- and long-term effects of these interventions to ad libitum protocols and found that, although all restricted diets decrease body weight, intermittent feeding did not decrease intra-abdominal adiposity. Short-term calorie restriction and intermittent feeding presented similar results relative to glucose tolerance. Surprisingly, long-term intermittent feeding promoted glucose intolerance, without a loss in insulin receptor phosphorylation. Intermittent feeding substantially increased insulin receptor nitration in both intra-abdominal adipose tissue and muscle, a modification associated with receptor inactivation. All restricted diets enhanced nitric oxide synthase levels in the insulin-responsive adipose tissue and skeletal muscle. However, whereas calorie restriction improved tissue redox state, food restriction and intermittent feedings did not. In fact, long-term intermittent feeding resulted in largely enhanced tissue release of oxidants. Overall, our results show that restricted diets are significantly different in their effects on glucose tolerance and redox state when adopted long-term. Furthermore, we show that intermittent feeding can lead to oxidative insulin receptor inactivation and glucose intolerance. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The curculionid beetle Naupactus bipes (Germar, 1824) (Coleoptera: Curculionidae: Brachycerinae) has shown feeding preference for leaves of Piper gaudichaudianum, demonstrating an unexpected specificity for an insect considered to be a generalist. The leaves of P. gaudichaudianum contain the prenylated chromenes gaudichaudianic acid (4, major compound) and its methyl ester (5) in addition to a chromene (3) lacking one prenyl residue. In addition to 4, roots contain the chromone methyl ester (1) and methyl taboganate (2, major compound). Feeding on roots, larvae of N. bipes sequester exclusively the root-specific compounds 1 and 2. Adult beetles sequester the leaf-specific chromenes 3 and 4, but were found to also contain compounds 1 and 2 that are absent in leaves. Therefore, it is suggested that 1 and 2 are sequestered by larvae and can be found in the body of adult insects after long-term storage. In addition, 3 and 4, the major compounds in leaves were found to be associated with the eggs.