53 resultados para 650403 Preparation and supply of energy source minerals
Resumo:
In general, plant material grown in vitro has low photosynthetic ability to achieve positive carbon balances. Therefore, a continuous supply of carbohydrates from the culture medium is required, and sucrose has been the most commonly used carbon source. In this paper, we investigate the effects of different sucrose concentrations and the presence and absence of light on the endogenous levels of soluble carbohydrates and starch as well as on the proliferation and growth of Dendrobium Second Love (Orchidaceae) in vitro. The possibility of using etiolated stem segments as a means for micropropagating this hybrid was also verified. The results obtained indicated that the presence and absence of light and the sucrose concentrations used influenced the amounts of soluble carbohydrates and starch and the proliferation of D. Second Love shoots and roots. An increase in sucrose concentration caused a progressive increase in the amounts of total carbohydrates and starch. Under both light conditions, sucrose was the main sugar found in the shoots followed by glucose and fructose. The addition of sucrose to the culture medium up to 2% and 4% was advantageous to the number of shoots produced per explant and the root longitudinal growth in the presence and absence of light, respectively. Shoot and root dry matter and the number of roots formed per explant increased as sucrose concentration was raised up to 6% in both light treatments. The use of dark-grown shoot segments proved to be a useful and reliable alternative for the micropropagation of this hybrid.
Resumo:
This study investigated the effects of stocking density on the growth and fatty acid (FA) of Brycon insignis metabolism. Fingerlings (360) were distributed into eight ponds at two stocking densities (105 and 210 g/m(3)). The analysis of growth showed that the condition factor (K) and the coefficient of variation (CV) for body mass were not affected by stocking density. However, final body mass and length, specific growth rate (SGR), and weight gain (WG) were higher in the low stocking density group, which also presented a higher feed efficiency (FE) and survival (S). By contrast, muscle protein levels were higher in the high stocking density group. The plasma and muscle lipid content were not affected by stocking density, but fish reared at lower stocking density presented higher lipid concentration in the liver, with no differences in hepatosomatic index values. Even with the differences observed in metabolic and growth parameters, plasma cortisol was not affected by stocking density. The FA profile in the muscle and liver neutral fraction were not affected by stocking density, but the FA in the polar fractions differed between the two stocking densities. In the liver, total polyunsaturated fatty acids (PUFA) and PUFA n - 3 increased in higher stocking density, mainly due to an increase in docosahexaenoic acid (DHA). In addition, PUFA n - 6 were also increased in the higher stocking density group, mainly due to an increase in arachidonic acid (AA) and docosadienoic acid (22:2n - 6). In the muscle polar fraction, the saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) decreased in the animals from the higher stocking density group, and this reduction was compensated by an increase in PUFA n - 3 and PUFA n - 6, mainly the FA with 20-22 carbons (20:4n - 6: 22:4:n - 6; 22:5n - 6, 22:5n - 3, and 22:6n - 3). A different profile was observed for the C18 PUFAs, mainly 18:2n - 6 and 18:4n - 6, which were higher in the lower density stocking group. The data suggest that when living in high stocking density, B. insignis differentially utilizes the hepatic lipids as energy source and remodels the membrane fatty acids, with higher amounts of DHA in the polar muscle fraction compensated for by a decrease in MUFA. The zootechnical and physiological indices reveal that the lower stocking density group achieve overall better performance. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A new preparation route towards rare-earth (RE) doped polycrystalline lead lanthanum zirconate titanate (PLZT) ceramics (RE = Y(3+), Nd(3+), Yb(3+)), based on the use of doped lanthanum oxide or zirconia, is reported. Structural characterization by X-ray powder diffraction reveals that secondary phase formation can be substantially diminished in comparison to conventional preparation methods. The distribution of the rare-earth dopants was investigated as a function of concentration by static (207)Pb spin echo NMR spectra, using Fourier Transformation of Carr-Purcell-Meiboom-Gill spin echo trains. For the Nd- and Yb-doped materials, the interaction of the (207)Pb nuclei with the unpaired electron spin density results in significant broadening and shifting of the NMR signal, whereas these effects are absent in the diamagnetic Y(3+) doped materials. Based on different concentration dependences of the NMR lineshape parameters, we conclude that the structural role of the Nd(3+) dopants differs significantly from that of Yb(3+). While the Nd(3+) ions appear to be statistically distributed in the PLZT lattice, incorporation of Yb(3+) into PLZT appears to be limited by the appearance of doped cubic zirconia as a secondary phase. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Akaganeite is a very rare iron oxyhydroxide in nature. It can be obtained by many synthetic routes, but thermohydrolysis is the most common method reported in the literature. In this work, akaganeite-like materials were prepared through the thermohydrolysis of FeCl(3)center dot 6H(2)O in water and suspensions containing clay minerals. X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) data show that the clays determine the crystal phase and size of the iron oxyhydroxide crystals. According to XRD and FTIR data, beta-FeO(OH) (akaganeite) is the main metal oxyhydroxide phase. Considering the small basal spacing (d(0 0 1)) displacement observed when comparing the XRD patterns of pristine clays with the composites containing beta-FeO(OH), the iron oxyhydroxide should be mostly located on the basal and edge surfaces of the clay minerals. UV-Vis electronic absorption spectra indicate that the preferred phase of the iron oxyhydroxide is determined by the nature of the clay minerals. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In the present work, the surface of the Eu-BTC = [Eu(EMA)(H(2)O)(2)], [Eu(TLA)(H(2)O)(4)] and [Eu(TMA)(H(2)O)(6)] complexes (EMA = 1,2,3-benzenetricarboxylate, TLA = 1,2,4-benzenetricarboxylate and TMA = 1,3,5-benzenetricarboxylate) was modified using 3-aminopropyltriethoxysilane (APTES) by a new microwave assisted method that proved to be simple and efficient. According to our observations, the most efficient luminescence is the material based on APTES incorporating [Eu(TMA)(H(2)O)(6)] complexes, denoted as Eu-TMA-Si, shows the highest emission efficiency. Therefore, it is proposed as a promising material for molecular conjugation in clinical diagnosis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Structural, energetic, and vibrational properties of new molecular species, HSeF and HFSe, the associated transition state, and dissociation fragments are investigated using a state-of-the-art theoretical approach, CCSD(T)/CBS. HSeF is a normal covalently bonded molecule 38.98 kcal mol (1) more stable than the complex HF-Se, which shows an unusual structure with a central fluorine atom and a bond angle of 101.8 degrees.A barrier (Delta G(#)) of 49.01 kcal mol (1) separates the two species. Vibrational frequencies are also quite distinct. Heats of formation are evaluated for the diatomic fragments and HSeF. Final Delta(f)H values depend on the experimental accuracy of those of Se(g) and H(2)Se. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Dye-sensitized solar cells, named by us Dye-Cells, are one of the most promising devices for solar energy conversion due to their reduced production cost and low environmental impact, especially those sensitized by natural dyes. The efficiency and stability of devices based on natural sensitizers such as mulberry (Morus alba Lam), blueberry (Vaccinium myrtillus Lam), and jaboticaba`s skin (Mirtus cauliflora Mart) were investigated. Dye-Cells prepared with aqueous mulberry extract presented the highest P(max) value (1.6 mW cm(-2)) with J(sc) = 6.14 mA cm(-2) and V(oc) = 0.49 V, Photoelectrochemical parameters of 16 cm(2) active area devices sensitized by mulberry dye were constant for 14 weeks of continuous evaluation. Moreover, the cell remained stable even after 36 weeks with a fairly good efficiency. Therefore, mulberry dye opens up a perspective of commercial feasibility for inexpensive and environmentally friendly Dye-Cells. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Mathematical modeling has been extensively applied to the study and development of fuel cells. In this work, the objective is to characterize a mechanistic model for the anode of a direct ethanol fuel cell and perform appropriate simulations. The software Comsol Multiphysics (R) (and the Chemical Engineering Module) was used in this work. The software Comsol Multiphysics (R) is an interactive environment for modeling scientific and engineering applications using partial differential equations (PDEs). Based on the finite element method, it provides speed and accuracy for several applications. The mechanistic model developed here can supply details of the physical system, such as the concentration profiles of the components within the anode and the coverage of the adsorbed species on the electrode surface. Also, the anode overpotential-current relationship can be obtained. To validate the anode model presented in this paper, experimental data obtained with a single fuel cell operating with an ethanol solution at the anode were used. (C) 2008 Elsevier B.V. All rights reserved.