126 resultados para 3-DIMENSIONAL ULTRASOUND
Resumo:
INTRODUÇÃO: o exame de tomografia computadorizada de feixe cônico (TCFC) oferece excelente representação dos tecidos duros da articulação temporomandibular (ATM). OBJETIVO: investigar as alterações morfológicas do côndilo mandibular, da infância à idade adulta, utilizando a TCFC. MÉTODOS: um estudo transversal foi conduzido envolvendo 36 côndilos de 18 indivíduos com idades variando entre 3 e 20 anos. As imagens dos côndilos foram obtidas por meio do sistema i-CAT e medidas com uma ferramenta do programa específica para ATM, que permite cortes perpendiculares à cabeça do côndilo, com correção individual em função das diferenças angulares de cada um. As maiores distâncias nas vistas lateral e frontal foram consideradas tanto para os côndilos do lado direto como para os do lado esquerdo. RESULTADOS: a dimensão lateral do côndilo mandibular parece ser estabelecida de maneira precoce, sofrendo poucas alterações com o passar dos anos, enquanto a dimensão frontal tende a aumentar. Assimetrias entre o côndilo esquerdo e o direito foram comumente observadas; no entanto, tais diferenças não apresentaram significância estatística para as vistas lateral (P=0,815) e frontal (P=0,374). CONCLUSÕES: os côndilos apresentaram simetria com relação ao tamanho, sendo observado crescimento apenas na dimensão frontal Os resultados sugerem que a TCFC constitui-se numa ferramenta útil na mensuração e avaliação das dimensões condilares.
Resumo:
Mixing layers are present in very different types of physical situations such as atmospheric flows, aerodynamics and combustion. It is, therefore, a well researched subject, but there are aspects that require further studies. Here the instability of two-and three-dimensional perturbations in the compressible mixing layer was investigated by numerical simulations. In the numerical code, the derivatives were discretized using high-order compact finite-difference schemes. A stretching in the normal direction was implemented with both the objective of reducing the sound waves generated by the shear region and improving the resolution near the center. The compact schemes were modified to work with non-uniform grids. Numerical tests started with an analysis of the growth rate in the linear regime to verify the code implementation. Tests were also performed in the non-linear regime and it was possible to reproduce the vortex roll-up and pairing, both in two-and three-dimensional situations. Amplification rate analysis was also performed for the secondary instability of this flow. It was found that, for essentially incompressible flow, maximum growth rates occurred for a spanwise wavelength of approximately 2/3 of the streamwise spacing of the vortices. The result demonstrated the applicability of the theory developed by Pierrehumbet and Widnall. Compressibility effects were then considered and the maximum growth rates obtained for relatively high Mach numbers (typically under 0.8) were also presented.
Resumo:
A phytochemical investigation of the ethanolic extract of stalks of Senna martiana Benth. (Leguminoseae), native specie of northeast Brazil, resulted in the isolation and spectroscopic characterization of a new bianthrone glycoside, martianine 1 (10,10'-il-chrysophanol-10-oxi10,10'-bi-glucosyl). Its identification was established by HRMS, IR and 2D NMR experiments. The evaluation of martianine trypanocidal activity was carried out against gliceraldehyde 3-phosphate dehydrogenase enzyme from Trypanosoma cruzi. Its inhibitory constant (Ki) is in the low micromolar concentration and it was determined by isothermal titration calorimetry to be 27.3 ± 2.47 µmol L-1. The non-competitive mechanism is asserted to be putative of the mode of action martianine displays against T. cruzi GAPDH. Results show that martianine has a great potential to become new lead molecule by inhibiting this key enzyme and for the development of new drugs against Chagas disease.
Resumo:
This paper presents a, simple two dimensional frame formulation to deal with structures undergoing large motions due to dynamic actions including very thin inflatable structures, balloons. The proposed methodology is based on the minimum potential energy theorem written regarding nodal positions. Velocity, acceleration and strain are achieved directly from positions, not. displacements, characterizing the novelty of the proposed technique. A non-dimensional space is created and the deformation function (change of configuration) is written following two independent mappings from which the strain energy function is written. The classical New-mark equations are used to integrate time. Dumping and non-conservative forces are introduced into the mechanical system by a rheonomic energy function. The final formulation has the advantage of being simple and easy to teach, when compared to classical Counterparts. The behavior of a bench-mark problem (spin-up maneuver) is solved to prove the formulation regarding high circumferential speed applications. Other examples are dedicated to inflatable and very thin structures, in order to test the formulation for further analysis of three dimensional balloons.
Resumo:
Two independent pseudo-enantiomeric molecules comprise the asymmetric unit in the title compound, C(15)H(14)O(2). While the central O-C-C-C residue approaches planarity [torsion angles = -15.8 (3) (molecule a) and 15.4 (3)degrees (molecule b)], the benzene rings are approximately orthogonal [the dihedral angles formed between the benzene rings are 62.89 (12) (molecule a) and 80.15 (12)degrees (molecule b)]. Two-dimensional arrays in the ab plane sustained by O-H center dot center dot center dot O hydrogen bonding are found in the crystal structure.
Resumo:
Methods currently employed to establish the etiology of congenital hypothyroidism include thyroid ultrasound and scintigraphic exams. Thyroglobulin is a protein almost exclusively secreted by thyroid tissue and indirectly reflects the amount of follicular cells. Even though thyroglobulin is easy to measure, it has been not frequently used because of discordant results to distinguish mainly athyreosis and ectopy (dysgenesis). Knowing the differences in inheritance and prognosis of thyroid dysgenesis and dyshormonogenesis, it is important to define the etiology of CH, combining tools that are easy, fast and available in most medical centers. Our objective was to evaluate and compare color Doppler ultrasound and serum thyroglobulin with radionuclide scan to define the etiology of congenital hypothyroidism. We evaluated 38 children above 3 years-old off-treatment that performed serum thyroglobulin by immunofluorometric assay, color Doppler ultrasound and radionuclide study. On color Doppler ultrasound, 11 patients had athyreosis, 5 ectopic glands, being I associated to hemiagenesis. Twenty one had topic thyroid (3 goiters, 10 normal, 8 hypoplastic). Hemiagenesis and cystic lesion were not revealed by radionuclide scan. We observed substantial agreement between color Doppler ultrasound and radionuclide scan (kappa=0.745, p<0.0001). Serum thyroglobulin in athyreosis ranged from <1.0 to 18.7 mu g/L. Patients with ectopic glands showed wider thyroglobulin range (4.5 to 123 mu g/L, median 28.4 mu g/L). Only one patient showed thyroglobulin deficiency. By using color Doppler ultrasound and serum thyroglobulin levels as valuable combined tools, we established the etiology of congenital hypothyroidism limiting excessive and harmful exams in children, like radionuclide scan.
Resumo:
Hemoglobinopathies were included in the Brazilian Neonatal Screening Program on June 6, 2001. Automated high-performance liquid chromatography (HPLC) was indicated as one of the diagnostic methods. The amount of information generated by these systems is immense, and the behavior of groups cannot always be observed in individual analyses. Three-dimensional (3-D) visualization techniques can be applied to extract this information, for extracting patterns, trends or relations from the results stored in databases. We applied the 3-D visualization tool to analyze patterns in the results of hemoglobinopathy based on neonatal diagnosis by HPLC. The laboratory results of 2520 newborn analyses carried out in 2001 and 2002 were used. The ""Fast"", ""F1"", ""F"" and ""A"" peaks, which were detected by the analytical system, were chosen as attributes for mapping. To establish a behavior pattern, the results were classified into groups according to hemoglobin phenotype: normal (N = 2169), variant (N = 73) and thalassemia (N = 279). 3-D visualization was made with the FastMap DB tool; there were two distribution patterns in the normal group, due to variation in the amplitude of the values obtained by HPLC for the F1 window. It allowed separation of the samples with normal Hb from those with alpha thalassemia, based on a significant difference (P < 0.05) between the mean values of the ""Fast"" and ""A"" peaks, demonstrating the need for better evaluation of chromatograms; this method could be used to help diagnose alpha thalassemia in newborns.
Resumo:
Within the superfield formalism, we study the ultraviolet properties of the three-dimensional super-symmetric quantum electrodynamics. The theory is shown to be finite at all loop orders in a particular gauge.
Resumo:
We report on the observation of microwave-induced resistance oscillations associated with the fractional ratio n/m of the microwave irradiation frequency to the cyclotron frequency for m up to 8 in a two-dimensional electron system with high electron density. The features are quenched at high microwave frequencies independent of the fractional order m. We analyze temperature, power, and frequency dependencies of the magnetoresistance oscillations and discuss them in connection with existing theories.
Resumo:
The dynamics and mechanism of migration of a vacancy point defect in a two-dimensional (2D) colloidal crystal are studied using numerical simulations. We find that the migration of a vacancy is always realized by topology switching between its different configurations. From the temperature dependence of the topology switch frequencies, we obtain the activation energies for possible topology transitions associated with the vacancy diffusion in the 2D crystal. (C) 2011 American Institute of Physics. [doi:10.1063/1.3615287]
Resumo:
In integrable one-dimensional quantum systems an infinite set of local conserved quantities exists which can prevent a current from decaying completely. For cases like the spin current in the XXZ model at zero magnetic field or the charge current in the attractive Hubbard model at half filling, however, the current operator does not have overlap with any of the local conserved quantities. We show that in these situations transport at finite temperatures is dominated by a diffusive contribution with the Drude weight being either small or even zero. For the XXZ model we discuss in detail the relation between our results, the phenomenological theory of spin diffusion, and measurements of the spin-lattice relaxation rate in spin chain compounds. Furthermore, we study the Haldane-Shastry model where a conserved spin current exists.
Resumo:
We present an extensive study of the structural, magnetic, and thermodynamic properties of the oxyborate Co(3)O(2)BO(3). This is carried out through x-ray diffraction, static and dynamic magnetic susceptibilities, and specific heat experiments in single crystals in a large temperature range. The structure of Co(3)O(2)BO(3) is composed of subunits in the form of three-leg ladders where Co ions with mixed valency are located. The magnetic properties of this Co ludwigite are determined by a competition between superexchange and double-exchange interactions in the low-dimensional subunits. We discuss the observed physical properties in comparison with the only other known homometallic ludwigite, Fe(3)O(2)BO(3). The latter presents a structural distortion in the ladders and two magnetic transitions. Both features are not found in the present study of the Co ludwigite. The reason for these differences in the structural and magnetic behavior of two apparently similar compounds is discussed.
Resumo:
The title 2:1 complex of 3-nitrophenol (MNP) and 4,4'-bipyridyl N, N'-dioxide (DPNO), 2C(6)H(5)NO(3)center dot C(10)H(8)N(2)O(2) or 2MNP center dot DPNO, crystallizes as a centrosymmetric three-component adduct with a dihedral angle of 59.40 (8)degrees between the planes of the benzene rings of MNP and DPNO (the DPNO moiety lies across a crystallographic inversion centre located at the mid-point of the C-C bond linking its aromatic rings). The complex owes its formation to O-H center dot center dot center dot O hydrogen bonds [O center dot center dot center dot O = 2.605 (3) angstrom]. Molecules are linked by intermolecular C-H center dot center dot center dot O and C-H center dot center dot center dot N interactions forming R(2)(1) (6) and R(2)(2) (10) rings, and R(6)(6) (34) and R(4)(4) (26) macro-rings, all of which are aligned along the [(1) over bar 01] direction, and R(2)(2) (10) and R(2)(1) (7) rings aligned along the [010] direction. The combination of chains of rings along the [(1) over bar 01] and [010] directions generates the three-dimensional structure. A total of 27 systems containing the DNPO molecule and forming molecular complexes of an organic nature were analysed and compared with the structural characteristics of the dioxide reported here. The N-O distance [1.325 (2) angstrom] depends not only on the interactions involving the O atom at the N-O group, but also on the structural ordering and additional three-dimensional interactions in the crystal structure. A density functional theory (DFT) optimized structure at the B3LYP/6-311G(d,p) level is compared with the molecular structure in the solid state.
Resumo:
We present an extensive study of the oxyborate material Co(5)Ti(O(2)BO(3))(2) using x-ray, magnetic, and thermodynamic measurements. This material belongs to a family of oxyborates known as ludwigites which presents low-dimensional subunits in the form of three leg ladders in its structure. Differently from previously investigated ludwigites the present material does not show long-range magnetic order although it goes into a spin-glass state at low temperatures. The different techniques employed in this paper allow for a characterization of the structure, the nature of the low-energy excitations and the magnetic anisotropy of this system. Its unique magnetic behavior is discussed and compared with those of other magnetic ludwigites.
Resumo:
The title compound, C(19)H(16)N(2)O(2)S, was synthesized from furoyl isothiocyanate and N-benzylaniline in dry acetone and the structure redetermined. The structure [Otazo-Sanchez et al. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218] has been re-determined in order to establish the intramolecular and intermolecular interactions. The thiourea group is in the thioamide form. The thiourea group makes a dihedral angle of 29.2 (6)degrees with the furoyl group. In the crystal structure, molecules are linked by intermolecular C-H center dot center dot center dot O interactions, forming one-dimensional chains along the a axis. An intramolecular N-H center dot center dot center dot O hydrogen bond is also present.