66 resultados para 174-1074
Resumo:
Background: Color Doppler myocardial imaging (CDMI) allows the calculation of local longitudinal or radial strain rate (SR) and strain (epsilon). The aims of this study were to determine the feasibility and reproducibility of longitudinal and radial SR and epsilon in neonates during the first hours of life and to establish reference values. Methods: Data were obtained from 55 healthy neonates (29 male; mean age, 20 +/- 14 hours; mean birth weight, 3,174 +/- 374 g). Apical and parasternal views quantified regional longitudinal and radial SR and epsilon in differing ventricular wall segments. Values at peak systole, early diastole, and late diastole were calculated from the extracted curves. CDMI data acquired at 300 +/- 50 frames/s were analyzed offline. Three consecutive cardiac cycles were measured during normal respiration. The timing of specific systolic or diastolic regional events was determined. Multiple comparisons between walls and segments were made. Results: Left ventricular (LV) longitudinal deformation showed basal differences compared with apical segments within one specific wall. Right ventricular (RV) longitudinal deformation was not homogeneous, with significant differences between basal and apical segments. Longitudinal 3 values were higher in the RV free basal and middle wall segments compared with the left ventricle. In the RV free wall apical segment, longitudinal SR and 3 were maximal. LV systolic SR and epsilon values were higher radially compared with longitudinally (radial peak systolic SR midportion, 2.9 +/- 0.6 s(-1); radial peak systolic epsilon 53.8 +/- 19%; longitudinal peak systolic SR midportion, -1.8 +/- 0.5 s(-1); longitudinal peak systolic epsilon, -24.8 +/- 3%; P < .01). Longitudinal systolic epsilon and SR interobserver variability values were 1.2% and 0.7%, respectively. Conclusion: Ultrasound-based SR and 3 imaging is a practical and reproducible clinical technique in neonates, allowing the calculation of regional longitudinal and radial deformation in RV and LV segments. These regional SR and epsilon indices represent new, noninvasive parameters that can quantify normal neonate regional cardiac function. Independent from visual interpretation, they can be used as reference values for diagnosis in ill neonates. (J Am Soc Echocardiogr 2009;22:369-375.)
Resumo:
In previous studies, we determined that beta 1 integrins from human colon tumors have elevated levels of alpha 2-6 sialylation, a modification added by beta-galactosamide alpha-2,6-sialyltranferase I (ST6Gal-I). Intriguingly, the beta 1 integrin is thought to be a ligand for galectin-3 (gal-3), a tumor-associated lectin. The effects of gal-3 are complex; intracellular forms typically protect cells against apoptosis through carbohydrate-independent mechanisms, whereas secreted forms bind to cell surface oligosaccharides and induce apoptosis. In the current study, we tested whether alpha 2-6 sialylation of the beta 1 integrin modulates binding to extracellular gal-3. Herein we report that SW48 colonocytes lacking alpha 2-6 sialylation exhibit beta 1 integrin-dependent binding to gal-3-coated tissue culture plates; however, binding is attenuated upon forced expression of ST6Gal-I. Removal of alpha 2-6 sialic acids from ST6Gal-I expressors by neuraminidase treatment restores gal-3 binding. Additionally, using a blot overlay approach, we determined that gal-3 binds directly and preferentially to unsialylated, as compared with alpha 2-6-sialylated, beta 1 integrins. To understand the physiologic consequences of gal-3 binding, cells were treated with gal-3 and monitored for apoptosis. Galectin-3 was found to induce apoptosis in parental SW48 colonocytes ( unsialylated), whereas ST6Gal-I expressors were protected. Importantly, gal-3-induced apoptosis was inhibited by function blocking antibodies against the beta 1 subunit, suggesting that beta 1 integrins are critical transducers of gal-3-mediated effects on cell survival. Collectively, our results suggest that the coordinate up-regulation of gal-3 and ST6Gal-I, a feature that is characteristic of colon carcinoma, may confer tumor cells with a selective advantage by providing a mechanism for blockade of the pro-apoptotic effects of secreted gal-3.
Resumo:
Objective: To evaluate voriconazole in the treatment of extensive cases of chromomycosis. Chromomycosis is a chronic infection, which is extremely difficult to eradicate, and is caused by dematiaceous (dark-colored) fungi which affect the skin and subcutaneous tissues, with Fonsecaea pedrosoi being the major etiologic agent. Drugs such as itraconazole, terbinafine, posaconazole and amphotericin B have been employed with variable results. Methods: We treated three Caucasian male patients (ages 44, 57 and 77 years), two were farmers and one a trash collector, with long-standing (20, 10 and 21 years of disease, respectively) and extensive chromomycosis (one lower limb affected, at least) due to Fonsecaea pedrosoi. All patients had received previous therapy with the formerly indicated drugs itraconazole and terbinafine for several months either without or with incomplete response. After that, we started treatment with voriconazole per os 200 mg twice a day. Results: The patients were treated with voriconazole for 12 months until there was clinical and mycological improvement. Clinical response was evident after 30-50 days. One patient developed visual abnormalities and tremors, and the voriconazole was reduced to 200 mg/day without impairment of the clinical and mycological response. The same patient presented photosensitive dermatitis after 12 months of therapy and the voriconazole was stopped. All patients showed elevations of serum gamma-glutamyl transpeptidase (GGT) during the treatment without clinical relevance. Moreover, our three patients obtained partial response with this therapy. Conclusions: This is the first report with a case series of chromomycosis treated with voriconazole. Despite its high cost, voriconazole is a safe and possibly promising drug for use on extensive chromomycosis refractory to conventional treatment.
Resumo:
Liver transplantation increased 1.84-fold from 1988 to 2004. However, the number of patients on the waiting list for a liver increased 2.71-fold, from 553 to 1500. We used a mathematical equation to analyze the potential effect of using ABO-compatible living-donor liver transplantation (LDLT) on both our liver transplantation program and the waiting list. We calculated the prevalence distribution of blood groups (O, A, B, and AB) in the population and the probability of having a compatible parent or sibling for LDLT. The incidence of ABO compatibility in the overall population was as follows: A, 0.31; B, 0.133; O, 0.512; and AB, 0.04. The ABO compatibility for parent donors was blood group A, 0.174; B, 0.06; O, 0.152; and AB, 0.03; and for sibling donors was A, 0.121; B, 0.05; O, 0.354; and AB, 0.03. Use of LDLT can reduce the pressure on our liver transplantation waiting list by decreasing its size by at least 16.5% at 20 years after its introduction. Such a program could save an estimated 3600 lives over the same period.
Resumo:
Ullrich congenital muscular dystrophy (UCMD) is a disabling and life-threatening disorder resulting from either recessive or dominant mutations in genes encoding collagen VI. Although the majority of the recessive UCMD cases have frameshift or nonsense mutations in COL6A1, COL6A2, or COL6A3, recessive structural mutations in the COL6A2 C-globular region are emerging also. However, the underlying molecular mechanisms have remained elusive. Here we identified a homozygous COL6A2 E624K mutation (C1 subdomain) and a homozygous COL6A2 R876S mutation (C2 subdomain) in two UCMD patients. The consequences of the mutations were investigated using fibroblasts from patients and cells stably transfected with the mutant constructs. In contrast to expectations based on the clinical severity of these two patients, secretion and assembly of collagen VI were moderately affected by the E624K mutation but severely impaired by the R876S substitution. The E624K substitution altered the electrostatic potential of the region surrounding the metal ion-dependent adhesion site, resulting in a collagen VI network containing thick fibrils and spots with densely packed microfibrils. The R876S mutation prevented the chain from assembling into triple-helical collagen VI molecules. The minute amount of collagen VI secreted by the R876S fibroblasts was solely composed of a faster migrating chain corresponding to the C2a splice variant with an alternative C2 subdomain. In transfected cells, the C2a splice variant was able to assemble into short microfibrils. Together, the results suggest that the C2a splice variant may functionally compensate for the loss of the normal COL6A2 chain when mutations occur in the C2 subdomain.
Resumo:
Objective: To identify the genes presenting different expression in uterine leiomyomas after goserelin treatment. Design: Retrospective analyses of tissue obtained in a prospective clinical study. Setting: School of Medicine of the University of Sao Paulo. Patient(s): 30 nulliparous black women aged 20 to 45 years with symptoms of uterine leiomyoma, uterine volume over 300 mL, and surgical indications for myomectomy. Intervention(s): Fifteen patients were given a monthly dose of 3.6 mg of goserelin over 3 months before surgery (group A), and 15 patients underwent surgery without any previous treatment (group B). Five random samples from each group were analyzed using the microarray technique with the Affymetrix platform (GeneChip Rat Genome 230 2.0 Array). Main Outcome Measure(s): Quantification of transcript expression levels of uterine fibroids in patients treated or not treated with goserelin. Result(s): Of the total of 47,000 sequences that were analyzed, representing approximately 38,500 human genes already characterized, we found a differential expression of 174 genes. Of these, 70 were up-regulated (33 genes with known function) and 104 were down-regulated (65 genes with known function) in samples from group A (treated) when compared with group B (nontreated). Conclusion(s): The genic expression of uterine leiomyomas changes in women who have had goserelin treatment when compared with nontreated patients. (Fertil Steril (R) 2010; 94: 1072-7. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Objective: To investigate the effects of the rate of airway pressure increase and duration of recruitment maneuvers on lung function and activation of inflammation, fibrogenesis, and apoptosis in experimental acute lung injury. Design: Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects: Thirty-five Wistar rats submitted to acute lung injury induced by cecal ligation and puncture. Interventions: After 48 hrs, animals were randomly distributed into five groups (seven animals each): 1) nonrecruited (NR); 2) recruitment maneuvers (RMs) with continuous positive airway pressure (CPAP) for 15 secs (CPAP15); 3) RMs with CPAP for 30 secs (CPAP30); 4) RMs with stepwise increase in airway pressure (STEP) to targeted maximum within 15 secs (STEP15); and 5) RMs with STEP within 30 secs (STEP30). To perform STEP RMs, the ventilator was switched to a CPAP mode and positive end-expiratory pressure level was increased stepwise. At each step, airway pressure was held constant. RMs were targeted to 30 cm H(2)O. Animals were then ventilated for 1 hr with tidal volume of 6 mL/kg and positive end-expiratory pressure of 5 cm H(2)O. Measurements and Main Results: Blood gases, lung mechanics, histology (light and electronic microscopy), interleukin-6, caspase 3, and type 3 procollagen mRNA expressions in lung tissue. All RMs improved oxygenation and lung static elastance and reduced alveolar collapse compared to NR. STEP30 resulted in optimal performance, with: 1) improved lung static elastance vs. NR, CPAP15, and STEP15; 2) reduced alveolar-capillary membrane detachment and type 2 epithelial and endothelial cell injury scores vs. CPAP15 (p < .05); and 3) reduced gene expression of interleukin-6, type 3 procollagen, and caspase 3 in lung tissue vs. other RMs. Conclusions: Longer-duration RMs with slower airway pressure increase efficiently improved lung function, while minimizing the biological impact on lungs. (Crit Care Med 2011; 39:1074-1081)
Resumo:
Objective. The objective of this study was to report our experience with pediatric orthotopic liver transplantation (OLT) with living related donors. Methods. We performed a retrospective chart analysis of 121 living related donor liver transplantations (LRDLT) from June 1998 to June 2010. Results. Indications were biliary atresia (BA; n = 81), primary sclerosing cholangitis (n = 5), alpha-1 antitrypsin deficiency (n = 4); cholestasis (n = 9), fulminant hepatic failure (n = 8), autoimmune hepatitis (n = 2), Alagille syndrome (n = 4), hepatoblastoma (n = 3), tyrosinemia (n = 2), and congenital hepatic fibrosis (n = 3). The age of the recipients ranged from 7-174 months (median, 22) and the weights ranged from 6-58 kg (median, 10). Forty-nine children (40.5%) weighed <= 10 kg. The grafts included the left lateral segment (n = 108), the left lobe (n = 12), and the right lobe (n = 1). The donors included 71 mothers, 45 fathers, 2 uncles, 1 grandmother, 1 grandfather, and 1 sister with a median age of 29 years (range, 16-53 ys) and a median weight of 68 kg (range, 47-106). Sixteen patients (12.9%) required retransplantation, most commonly due to hepatic artery thrombosis (HAT; n = 13; 10.7%). The other complications were biliary stenosis (n = 25; 20.6%), portal vein thrombosis (PVT; n = 11; 9.1%), portal vein stenosis (n = 5; 4.1%), hepatic vein stenosis (n = 6; 4.9%), and lymphoproliferative disorders (n = 8; 6.6%). The ultimate survival rate of recipients was 90.3% after 1 year and 75.8% after 3 years. Causes of early death within 1 month were HAT (n = 6), PVT (n = 2), severe graft dysfunction (n = 1), sepsis (n = 1), and intraoperative death in children with acute liver failure (n = 2). Causes of late deaths included lymphoproliferative disease (n = 3), chronic rejection (n = 2), biliary complications (n = 3), and recurrent disease (n = 3; hepatoblastoma and primary sclerosing cholangitis). Conclusions. Despite the heightened possibility of complications (mainly vascular), LRDLT represented a good alternative to transplantation from cadaveric donors in pediatric populations. It was associated with a high survival ratio.
Resumo:
Few proton magnetic resonance spectroscopy ((1)H spectroscopy) studies have investigated the dorsolateral prefrontal cortex (DLPFC), a key region in the pathophysiology of major depressive disorder (MDD). We used (1)H spectroscopy to verify whether MDD patients differ from healthy controls (HQ in metabolite levels in this brain area. Thirty-seven unmedicated DSM-IV MDD patients were compared with 40 HC. Subjects underwent a short echo-time (1)H spectroscopy examination at 1.5 T, with an 8-cm(3) single voxel placed in the left DLPFC. Reliable absolute metabolite levels of N-acetyl aspartate (NAA), phosphocreatine plus creatine (PCr+Cr), choline-containing compounds (GPC+PC), myo-inositol, glutamate plus glutamine (Glu+Gln), and glutamate were obtained using the unsuppressed water signal as an internal reference. Metabolite levels in the left DLPFC did not statistically differ between MDD patients and HC. We found an interaction between gender and diagnosis on PCr+Cr levels. Male MDD patients presented lower levels of PCr+Cr than male HC, and female MDD patients presented higher levels of PCr+Cr than female HC. Moreover, length of illness was inversely correlated with NAA levels. These findings suggest that there is not an effect of diagnosis on the left DLPFC neurochemistry. Possible effects of gender on PCr+Cr levels of MDD patients need to be further investigated. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Emotional liability and mood dysregulation characterize bipolar disorder (BID), yet no study has examined effective connectivity between parahippocampal gyrus and prefrontal cortical regions in ventromedial and dorsal/lateral neural systems subserving mood regulation in BD. Participants comprised 46 individuals (age range: 18-56 years): 21 with a DSM-IV diagnosis of BID, type I currently remitted; and 25 age- and gender-matched healthy controls (HC). Participants performed an event-related functional magnetic resonance imaging paradigm, viewing mild and intense happy and neutral faces. We employed dynamic causal modeling (I)CM) to identify significant alterations in effective connectivity between BD and HC. Bayes model selection was used to determine the best model. The right parahippocampal gyrus (PHG) and right subgenual cingulate gyrus (sgCG) were included as representative regions of the ventromedial neural system. The right dorsolateral prefrontal cortex (DLPFC) region was included as representative of the dorsal/lateral neural system. Right PHG-sgCG effective connectivity was significantly greater in BD than HC, reflecting more rapid, forward PHG-sgCG signaling in BD than HC. There was no between-group difference in sgCG-DLPFC effective connectivity. In BD, abnormally increased right PHG-sgCG effective connectivity and reduced right PHG activity to emotional stimuli suggest a dysfunctional ventromedial neural system implicated in early stimulus appraisal, encoding and automatic regulation of emotion that may represent a pathophysiological functional neural mechanism for mood dysregulation in BD. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this report, we describe a case of disseminated sporotrichosis that was diagnosed by fine-needle aspiration biopsy (FNAB). The cytologic smears exhibited a large number of macrophages, few polymorphonuclear neutrophils and numerous round or oval, sometimes elongated, isolated and scattered yeast-like structures localized extracellularly or inside macrophages. These structures were clearly visualized by Giemsa and Papanicolaou methods. Cultures from skin biopsy material revealed,fungal colonies which were subsequently identified as Sporothrix schenckii. The cytologic aspects, the correlation with histologic findings and the differential cytologic diagnosis were reviewed.
Resumo:
The Syk tyrosine kinase family plays an essential role in immunoreceptor tyrosine-based activation motif (ITAM) signaling. The binding of Syk to tyrosine-phosphorylated ITAM subunits of immunoreceptors, such as Fc epsilon RI on mast cells, results in a conformational change, with an increase of enzymatic activity of Syk. This conformational change exposes the COOH-terminal tail of Syk, which has three conserved Tyr residues (Tyr-623, Tyr-624, and Tyr-625 of rat Syk). To understand the role of these residues in signaling, wild-type and mutant Syk with these three Tyr mutated to Phe was expressed in Syk-deficient mast cells. There was decreased Fc epsilon RI-induced degranulation, nuclear factor for T cell activation and NF kappa B activation with the mutated Syk together with reduced phosphorylation of MAP kinases p38 and p42/44 ERK. In non-stimulated cells, the mutated Syk was more tyrosine phosphorylated predominantly as a result of autophosphorylation. In vitro, there was reduced binding of mutated Syk to phosphorylated ITAM due to this increased phosphorylation. This mutated Syk from non-stimulated cells had significantly reduced kinase activity toward an exogenous substrate, whereas its autophosphorylation capacity was not affected. However, the kinase activity and the autophosphorylation capacity of this mutated Syk were dramatically decreased when the protein was dephosphorylated before the in vitro kinase reaction. Furthermore, mutation of these tyrosines in the COOH-terminal region of Syk transforms it to an enzyme, similar to its homolog ZAP-70, which depends on other tyrosine kinases for optimal activation. In testing Syk mutated singly at each one of the tyrosines, Tyr-624 but especially Tyr-625 had the major role in these reactions. Therefore, these results indicate that these tyrosines in the tail region play a critical role in regulating the kinase activity and function of Syk.
Resumo:
Objective. To determine the blood recirculation ratio in the vascular access of patients on hemodialysis, and to calculate the Kt/Vs obtained with the different techniques of arteriovenous fistula punctures. Materials and Methods. A total of 174 patients were divided according to the technique used for arteriovenous fistula puncture: group 1, needles in opposite directions and with a distance of 5 cm or more between them; group 2, needles in opposite directions but with a distance of less than 5 cm; group 3, unidirectional needles with both directed to the heart and with a distance of 5 cm or more; group 4, unidirectional needles but separated by a distance of less than 5 cm between needles; and group 5, patients carrying a temporary venous catheter. Blood samples were collected for urea analysis, pre and post-dialysis for Kt/V rate, and other samples for calculation of the access recirculation. Results. Group 1 presented the lowest rate of access recirculation (8.51 +/- 4.90%) and the best Kt/V (1.71 +/- 0.36), while group 4 presented the worst access recirculation (20.68 +/- 4.92%) and Kt/V (1.16 +/- 0.26). All groups differed significantly from group 4 (p < 0.05), except group 5 with regard for Kt/V parameter. Discussion. The technique of arteriovenous fistula puncture is an essential factor to decrease the access recirculation and assure better results of measurement of hemodialysis adequacy. On the basis of the results obtained, insertion of the needles in the same direction and with a distance of less than 5 cm between them should be avoided.
Resumo:
Thimet oligopeptidase (EC 3.4.24.15; EP24.15) is an intracellular enzyme that has been proposed to metabolize peptides within cells, thereby affecting antigen presentation and G protein-coupled receptor signal transduction. However, only a small number of intracellular substrates of EP24.15 have been reported previously. Here we have identified over 100 peptides in human embryonic kidney 293 (HEK293) cells that are derived from intracellular proteins; many but not all of these peptides are substrates or products of EP24.15. First, cellular peptides were extracted from HEK293 cells and incubated in vitro with purified EP24.15. Then the peptides were labeled with isotopic tags and analyzed by mass spectrometry to obtain quantitative data on the extent of cleavage. A related series of experiments tested the effect of overexpression of EP24.15 on the cellular levels of peptides in HEK293 cells. Finally, synthetic peptides that corresponded to 10 of the cellular peptides were incubated with purified EP24.15 in vitro, and the cleavage was monitored by high pressure liquid chromatography and mass spectrometry. Many of the EP24.15 substrates identified by these approaches are 9-11 amino acids in length, supporting the proposal that EP24.15 can function in the degradation of peptides that could be used for antigen presentation. However, EP24.15 also converts some peptides into products that are 8-10 amino acids, thus contributing to the formation of peptides for antigen presentation. In addition, the intracellular peptides described here are potential candidates to regulate protein interactions within cells.
Resumo:
Glutathione (GSH) has an important dual role in parasite-host relationship in Leishmania major infection. Our previous studies showed that both antioxidant systems, glutathione and trypanothione/trypanothione reductase, participate in the protection of Leishmania against the toxic effect of nitrogen-derived reactive species. On the other hand, GSH also is very important to the modulation of the effective immune response, inducting NO production and leishmanicidal activity of macrophages. In the present study, we investigated the role of host GSH during the course of L. major infection, analysing the size of footpad lesions and parasite load from mice treated with two GSH modulators, N-acethyl-L-cysteine (NAC) and buthionine sulphoximine (BSO). Resistant mice treated with BSO, which depletes GSH develop exacerbated lesions, but only harbour higher parasite load in their lesions 2 weeks post-infection. Although the NAC treatment does not affect the footpad lesions development in susceptible BALB/c mice, it significantly reduced the tissue parasitism in the lesions throughout the course of infection. Interestingly, the treatment with BSO did not change the course of L. major infection on susceptible mice when compared with nontreated mice. These results suggest that GSH is an important antioxidant modulator during anti-Leishmania immune response in vivo.