682 resultados para Ives Gandra Martins
Resumo:
Secondary hyperparathyroidism is a common complication in uremic patients. Total parathyroidectomy combined with partial autotransplantation into brachioradialis muscle has been the preference among the options for surgical treatment. This study was designed to evaluate the reserve and ability of suppression of autotransplanted parathyroid tissue using dynamics tests. We studied, prospectively, 12 patients in recent (RP) and late (LP) postoperative of total parathyroidectomy with autotransplantation. For analysis of the secretory reserve capacity, we induced hypocalcemia by ethylenediaminetetraacetic acid (EDTA) infusion. Furthermore, for analysis of the ability for parathyroid hormone (PTH) suppression, the hypercalcemia test was used, by intravenous administration of calcium in LP. In RP, there was a decrease in the average serum levels of PTH, phosphorus, and alkaline phosphatase, which ranged from 13 to 231 (87 +/- A 65) pg/ml, 2.3 to 6.2 (3.3 +/- A 1.1) mg/dl, and 77 to 504 (250 +/- A 135) U/L, respectively, similar to that observed in LP. The analysis of the average curve of variations in PTH during testing of the stimulus with EDTA showed lack of secretion in RP and partial response in LP. Impaired suppression ability of the graft in LP was observed in the test with intravenous calcium. Total parathyroidectomy followed by partial autotransplantation was effective in reducing PTH serum levels in patients with terminal kidney disease. The elevation of serum calcium during the suppression test was not able to inhibit the autograft gland secretion of PTH. The assessment of parathyroid graft function demonstrated an inability to respond to the stimulus of hypocalcemia induced by EDTA, although there was a partial recovery, in late postoperative period.
Resumo:
A new polymorphic INDEL was detected at the X-STR GATA172D05 flanking region, which corresponds to an 18-bp deletion, 141 bp upstream the TAGA repeat motif. This INDEL was found to be polymorphic in different population samples from Native Americans, Africans, and Europeans as well as in an admixed population from the Amazonia (Bel,m). Gene diversities varied between 37.5% in Native Americans and 49.9% in Africans. Comparison between human and chimpanzee sequences showed that the ancestral state corresponds to the presence of two copies of 18 bp, detected in both species; and the mutated allele has lost one of these two copies. The simultaneous analysis of the short tandem repeat (STR) and INDEL variation showed an association between the INDEL ancestral allele with the shorter STR alleles. High diversities were found in all population groups when combining the information provided by the INDEL and STR variation. Gene diversities varied between 76.7% in Native Americans and 80.6% in both Portugal and Bel,m.
Resumo:
Objective: To investigate pathophysiological factors underlying the presence of interictal hyper-perfusion within the limits of the polymicrogyric (PMG) cortex in epileptic patients. Methods: Retrospective observational study on interictal perfusion by Single Photon Emission Computed Tomography (SPECT) in 16 patients with PMG and its correlations with a number of clinical and neurophysiological variables. Patients underwent video-EEG monitoring, neurological and psychiatric assessments, invasive EEG, and the interictal SPECT coregistered to Magnetic Resonance Imaging (MRI). Results: Patients with interictal hyperperfusion within the PMG cortex had a significantly higher spike rate on interictal EEG than patients with normal perfusion. Interictal hyperperfusion was not correlated to sex, age at epilepsy onset, age at evaluation, number of seizures per month, presence of initial precipitating insult (IPI), abnormal neurological examination, EEG findings, ictal serniology, and seizure outcome. The high interictal spike rate did not correlate to a high frequency of seizures per month. Conclusions: Our work provides further evidences for an intrinsic epileptogenesis of the PMG cortex during the interictal state, which accounts for the major rote of PMG tissue in seizure generation. These results might help to increase our understanding about epileptogenesis related to the PMG cortex, providing new toots for more tailored epilepsy surgery in PMG patients. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objectives. In this study, we aimed to identify ancestry informative haplotypes and make interethnic admixture estimates using X-chromosome markers. Methods. A significant sample (461 individuals) of European, African, and Native American populations was analyzed, and four linkage groups were identified. The data obtained were used to describe the ancestral contribution of populations from four different geographical regions of Brazil (745 individuals). Results. The global interethnic admixture estimates of the four mixed populations under investigation were calculated applying all the 24 insertion/deletion (INDEL) markers. In the North region, a larger Native Americans ancestry was observed (42%). The Northeast and Southeast regions had smaller Native American contribution (27% in both of them). In the South region, there was a large European contribution (46%). Conclusions. The estimates obtained are compatible with expectations for a colonization model with biased admixture between European men (one X chromosome) and Native American and African women (two X chromosomes), so the 24 X-INDEL panel described here can be a useful to make admixture interethnic estimates in Brazilian populations. Am. J. Hum. Biol. 22:849-852,2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
It is well known that regular physical exercise alter cardiac function and autonomic modulation of heart rate variability (HRV). The paraventricular nucleus of hypothalamus (PVN) is an important site of integration for autonomic and cardiovascular responses, where nitric oxide (NO) plays an important role. The aim of our study was to evaluate the cardiovascular parameters and autonomic modulation by means of spectral analysis after nitric oxide synthase (NOS) inhibition in the PVN in conscious sedentary (S) or swimming trained (ST) rats. After swimming training protocol, adult male Wistar rats, instrumented with guide cannulas to PVN and femoral artery and vein catheters were submitted to mean arterial pressure (MAP) and heart rate (HR) recording. At baseline, the physical training induced a resting bradycardia (S: 374 +/- 5, ST: 346 +/- 1 bpm) and promoted adaptations in HRV characterized by an increase in high-frequency oscillations (HF; 26.43 +/- 6.91 to 88.96 +/- 244) and a decrease in low-frequency oscillations (LF; 73.57 +/- 6.91 to 11.04 +/- 2.44) in normalized units. The microinjection of N(omega)-nitro-L-arginine methyl ester (L-NAME) in the PVN of sedentary and trained rats promoted increase in MAP and HR. L-NAME in the PVN did not significantly alter the spectral parameters of HRV of sedentary animals, however in the trained rats increased LF oscillations (11.04 +/- 2.44 to 27.62 +/- 6.97) and decreased HF oscillations (88.96 +/- 2.44 to 72.38 +/- 6.97) in normalized units compared with baseline. Our results suggest that NO in the PVN may collaborate to cardiac autonomic modulation after exercise training. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Rationale Sepsis is defined as a systemic inflammatory response to infection, which in its severe form is associated with multiple organ dysfunction syndrome (MODS). The precise mechanisms by Which MODS develops remain unclear. Neutrophils have a pivotal role in the defense against infections; however, overwhelming activation of neutrophils is known to elicit tissue damage. Objectives: We investigated the role of the chemokine receptor CCR2 in driving neutrophil infiltration and eliciting tissue damage in remote organs during sepsis. Methods: Sepsis was induced in wild-type mice treated with CCR2 antagonist (RS504393) or CCR2(-/-) mice by cecal ligation and puncture (CLP) model. Neutrophil infiltration into the organs was measured by myeloperoxidase activity and fluorescence-activated cell sorter. CCR2 expression and chemotaxis were determined in neutrophils stimulated with Toll-like receptor agonists or isolated from septic mice and patients. Measurements and Main Results: CCR2 expression and responsiveness to its ligands was induced in circulating neutrophils during CLP-induced sepsis by a mechanism dependent on Toll-like receptor/nuclear factor-kappa B pathway. Genetic or pharmacologic inhibition of CCR2 protected mice from CLP-induced mortality. This protection was associated with lower infiltration of neutrophils into the lungs, heart, and kidneys and reduced serum biochemical indicators of organ injury and dysfunction. Importantly, neutrophils from septic patients express high levels of CCR2, and the severity of patient illness correlated positively with increasing neutrophil chemotaxis to CCR2 ligands. Conclusions: Collectively, these data identify CCR2 as a key receptor that drives the inappropriate infiltration of neutrophils into remote organs during sepsis. Therefore, CCR2 blockade is a novel potential therapeutic target for treatment of sepsis-induced MODS.
Resumo:
This study provides evidence supporting the idea that although inflammatory cells migration to the cardiac tissue is necessary to control the growth of Trypanosoma cruzi, the excessive influx of such cells during acute myocarditis may be deleterious to the host. Production of lipid mediators of inflammation like leukotrienes (LTs) along with cytokines and chemokines largely influences the severity of inflammatory injury in response to tissue parasitism. T cruzi infection in mice deficient in 5-lipoxygenase (5-LO), the enzyme responsible for the synthesis of LTs and other lipid inflammatory mediators, resulted in transiently increased parasitemia, and improved survival rate compared with WT mice. Myocardia from 5-LO(-/-) mice exhibited reduced inflammation, collagen deposition, and migration of CD4(+), CD8(+), and IFN-gamma-producer cells compared with WT littermates. Moreover, decreased amounts of TNF-alpha, IFN-gamma, and nitric oxide synthase were found in the hearts of 5-LO(-/-) mice. Interestingly, despite of early higher parasitic load, 5-LO(-/-) mice survived, and controlled T cruzi infection. These results show that efficient parasite clearance is possible in a context of moderate inflammatory response, as occurred in 5-LO(-/-) mice, in which reduced myocarditis protects the animals during T cruzi infection. (c) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Sepsis is a systemic inflammatory condition following bacterial infection with a high mortality rate and limited therapeutic options(1,2). Here we show that interleukin-33 (IL-33) reduces mortality in mice with experimental sepsis from cecal ligation and puncture (CLP). IL-33-treated mice developed increased neutrophil influx into the peritoneal cavity and more efficient bacterial clearance than untreated mice. IL-33 reduced the systemic but not the local proinflammatory response, and it did not induce a T helper type 1 (T(H)1) to T(H)2 shift. The chemokine receptor CXCR2 is crucial for recruitment of neutrophils from the circulation to the site of infection(3). Activation of Toll-like receptors (TLRs) in neutrophils downregulates CXCR2 expression and impairs neutrophil migration(4). We show here that IL-33 prevents the downregulation of CXCR2 and inhibition of chemotaxis induced by the activation of TLR4 in mouse and human neutrophils. Furthermore, we show that IL-33 reverses the TLR4-induced reduction of CXCR2 expression in neutrophils via the inhibition of expression of G protein coupled receptor kinase-2 (GRK2), a serine-threonine protein kinase that induces internalization of chemokine receptors(5,6). Finally, we find that individuals who did not recover from sepsis had significantly more soluble ST2 (sST2, the decoy receptor of IL-33) than those who did recover. Together, our results indicate a previously undescribed mechanism of action of IL-33 and suggest a therapeutic potential of IL-33 in sepsis.
Resumo:
The present study compared two heating methods currently used for antigen retrieval (AR) immunostaining: the microwave oven and the steam cooker. Myosin-V, a molecular motor involved in vesicle transport, was used as a neuronal marker in honeybee Apis mellifera brains fixed in formalin. Overall, the steam cooker showed the most satisfactory AR results. At 100 degrees C, tissue morphology was maintained and revealed epitope recovery, while evaporation of the AR solution was markedly reduced; this is important for stabilizing the sodium citrate molarity of the AR buffer and reducing background effects. Standardization of heat-mediated AR of formalin-fixed and paraffin-embedded tissue sections results in more reliable immunostaining of the honeybee brain.
Resumo:
Endogenous angiotensin (Ang) II and/or an Ang II-derived peptide, acting on Ang type I (AT(1)) and Ang type 2 (AT(2)) receptors, can carry out part of the nociceptive control modulated by periaqueductal gray matter (PAG). However, neither the identity of this putative Ang-peptide, nor its relationship to Ang II antinociceptive activity was clarified. Therefore, we have used tail-flick and incision allodynia models combined with an HPLC time course of Ang metabolism, to study the Ang III antinociceptive effect in the rat ventrolateral (vi) PAG using peptidase inhibitors and receptor antagonists. Ang III injection into the vIPAG increased tail-flick latency, which was fully blocked by Losartan and CGP 42,112A, but not by divalinal-Ang IV, indicating that. Ang III effect was mediated by AT(1) and AT(2) receptors, but not by the AT(4) receptor. Ang III injected into the vIPAG reduced incision allodynia. Incubation of Ang II with punches of vIPAG homogenate formed Ang III, Ang (1-7) and Ang IV. Amastatin (AM) inhibited the formation of Ang III from Ang II by homogenate, and blocked the antinociceptive activity of Ang II injection into vIPAG, suggesting that aminopeptidase A (APA) formed Ang III from Ang II. Ang III can also be formed from Ang I by a vIPAG alternative pathway. Therefore, the present work shows, for the first time, that: (i) Ang III, acting on AT(1) and AT(2) receptors, can elicit vIPAG-mediated antinociception, (ii) the conversion of Ang II to Ang III in the vIPAG is required to elicit antinociception, and (iii) the antinociceptive activity of endogenous Ang II in vIPAG can be ascribed preponderantly to Ang III. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Santos FM, Dias DPM, Silva CAA, Fazan Jr R, Salgado HC. Sympathetic activity is not increased in L-NAME hypertensive rats. Am J Physiol Regul Integr Comp Physiol 298: R89-R95, 2010. First published November 4, 2009; doi:10.1152/ajpregu.00449.2009.-The role played by the sympathetic drive in the development of N(G)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension is not firmly established. Therefore, the present study was undertaken in conscious rats in which hypertension was induced by treatment with L-NAME over the course of either 2 or 14 days. Mean arterial pressure (MAP) was measured via a catheter placed in the femoral artery, drugs were administered via a cannula placed in the femoral vein, and renal sympathetic nerve activity (RSNA) was monitored using an implanted electrode. Despite the remarkable increase in arterial pressure, heart rate did not change after treatment with L-NAME. RSNA was similar in L-NAME-induced hypertensive rats treated over the course of 2 or 14 days, as well as in normotensive rats. It was also demonstrated that L-NAME-induced hypertensive rats displayed a resetting of the baroreflex control of RSNA to hypertensive levels, with decreased sensitivity over the course of 2 or 14 days. Furthermore, the sympathetic-vagal balance examined in the time and frequency domain and the renal and plasma norepinephrine content did not differ between groups. In conclusion, the evaluation of the sympathetic drive in conscious rats demonstrated that the arterial hypertension induced by L-NAME treatment over the course of 2 and 14 days does not show sympathetic overactivity.
Resumo:
1. The present study evaluated changes in autonomic control of the cardiovascular system in conscious rats following blockade of endothelin (ET) receptors with bosentan. 2. Rats were treated with bosentan or vehicle (5% gum arabic) for 7 days by gavage. 3. Baseline heart rate (HR) was higher in the bosentan-treated group compared with the control group (418 +/- 5 vs 357 +/- 4 b.p.m., respectively; P < 0.001). This baseline tachycardia was associated with a lower baroreflex sensitivity of the bradycardiac and tachycardiac responses in the bosentan-treated group compared with the control group. Sequential blockade of the parasympathetic and sympathetic autonomic nervous system with methylatropine and propranolol showed a higher intrinsic HR in the bosentan-treated group compared with the control group (411 +/- 5 vs 381 +/- 4 b.p.m., respectively; P < 0.05). This was accompanied by a higher cardiac sympathetic tone (31 +/- 1 vs 13 +/- 1%, respectively; P < 0.01) and a lower vagal parasympathetic tone (69 +/- 2 vs 87 +/- 2%, respectively; P < 0.01) in the bosentan-treated group compared with the control group. Variance and high-frequency oscillations of pulse interval (PI) variability in absolute and normalized units were lower in the bosentan-treated group than in the control group. Conversely, low-frequency (LF) oscillations of PI variability in absolute and normalized units, as well as variance and LF oscillations of systolic arterial pressure variability, were greater in the bosentan-treated group than the control group. 4. Overall, the data indicate an increased cardiac sympathetic drive, as well as lower vagal parasympathetic activity and baroreflex sensitivity, in conscious rats after chronic blockade of ET receptors with bosentan.
Resumo:
Different routes for the administration of bone marrow-derived cells (BMDC) have been proposed to treat the progression of chronic renal failure (CRF). We investigated whether (1) the use of bovine pericardium (BP) as a scaffold for cell therapy would retard the progression of CAF and (2) the efficacy of cell therapy differently impacts distinct degrees of CRF. We used 2/3 and 5/6 models of renal mass reduction to simulate different stages of chronicity. Treatments consisted of BP seeded with either mesenchymal or mononuclear cells implanted in the parenchyma of remnant kidney. Renal function and proteinuria were measured at days 45 and 90 after cell implantation. BMDC treatment reduced glomerulosclerosis, interstitial fibrosis and lymphocytic infiltration. Immunohistochemistry showed decreased macrophage accumulation, proliferative activity and the expression of fibronectin and alpha-smooth muscle-actin. Our results demonstrate: (1) biomaterial combined with BMDC did retard the progression of experimental CRF; (2) cellular therapy stabilized serum creatinine (sCr), improved creatinine clearance and 1/sCr slope when administered during the less severe stages of CRF; (3) treatment with combined therapy decreased glomerulosclerosis, fibrosis and the expression of fibrogenic molecules; and (4) biomaterials seeded with BMDC can be an alternative route of cellular therapy.
Resumo:
Tabernaemontana catharinensis root bark ethanol extract, EB2 fraction and the MMV alkaloid (12-methoxy-4-methylvoachalotine) were evaluated for their antimicrobial activities. T. catharinensis ethanol extract was effective against both strains of the dermatophyte Trichophyton rubrum at concentrations of 2.5 mg/mL (wild strain) and 1.25 mg/mL (mutant strain), while the EB2 fraction and MMV alkaloid showed a strong antifungal activity against wild and mutant strains with MIC values of <0.02 and 0.16 mg/mL, respectively. The EB2 fraction showed a strong antibacterial activity against ATCC strains of S. aureus, S. epidermidis, E. coli and P. aeruginosa with MICs from <0.02 to 0.04 mg/mL, as well as against resistant clinical isolates species of Enterococcus sp, Klebsiella oxytoca, Citrobacter, K. pneumoniae, P. mirabilis, S. aureus, S. epidermidis, E. coli and P. aeruginosa with MIC values ranging from 0.04 to 0.08 mg/mL. The MMV alkaloid presented a MIC of 0.16 mg/mL against the strains of S. aureus and E. coli ATCC. For the resistant clinical isolates Enterococcus sp, Citrobacter, S. aureus, S. epidermidis, E. coil and P. aeruginosa the MIC of MMV ranged from 0.08 to 0.31 mg/mL. The chromatography analysis of the EB2 fraction revealed the presence of indole alkaloids, including MMV, possibly responsible for the observed antimicrobial activity.
Resumo:
Plant-antivenom is a computational Websystem about medicinal plants with anti-venom properties. The system consists of a database of these plants, including scientific publications on this subject and amino acid sequences of active principles from venomous animals. The system relates these data allowing their integration through different search applications. For the development of the system, the first surveys were conducted in scientific literature, allowing the creation of a publication database in a library for reading and user interaction. Then, classes of categories were created, allowing the use of tags and the organization of content. This database on medicinal plants has information such as family, species, isolated compounds, activity, inhibited animal venoms, among others. Provision is made for submission of new information by registered users, by the use of wiki tools. Content submitted is released in accordance to permission rules defined by the system. The database on biological venom protein amino acid sequences was structured from the essential information from National Center for Biotechnology Information (NCBI). Plant-antivenom`s interface is simple, contributing to a fast and functional access to the system and the integration of different data registered on it. Plant-antivenom system is available on the Internet at http://gbi.fmrp.usp.br/plantantivenom.