75 resultados para volume algorithm
Resumo:
An algorithm inspired on ant behavior is developed in order to find out the topology of an electric energy distribution network with minimum power loss. The algorithm performance is investigated in hypothetical and actual circuits. When applied in an actual distribution system of a region of the State of Sao Paulo (Brazil), the solution found by the algorithm presents loss lower than the topology built by the concessionary company.
Resumo:
The most popular algorithms for blind equalization are the constant-modulus algorithm (CMA) and the Shalvi-Weinstein algorithm (SWA). It is well-known that SWA presents a higher convergence rate than CMA. at the expense of higher computational complexity. If the forgetting factor is not sufficiently close to one, if the initialization is distant from the optimal solution, or if the signal-to-noise ratio is low, SWA can converge to undesirable local minima or even diverge. In this paper, we show that divergence can be caused by an inconsistency in the nonlinear estimate of the transmitted signal. or (when the algorithm is implemented in finite precision) by the loss of positiveness of the estimate of the autocorrelation matrix, or by a combination of both. In order to avoid the first cause of divergence, we propose a dual-mode SWA. In the first mode of operation. the new algorithm works as SWA; in the second mode, it rejects inconsistent estimates of the transmitted signal. Assuming the persistence of excitation condition, we present a deterministic stability analysis of the new algorithm. To avoid the second cause of divergence, we propose a dual-mode lattice SWA, which is stable even in finite-precision arithmetic, and has a computational complexity that increases linearly with the number of adjustable equalizer coefficients. The good performance of the proposed algorithms is confirmed through numerical simulations.
Resumo:
This work aims at proposing the use of the evolutionary computation methodology in order to jointly solve the multiuser channel estimation (MuChE) and detection problems at its maximum-likelihood, both related to the direct sequence code division multiple access (DS/CDMA). The effectiveness of the proposed heuristic approach is proven by comparing performance and complexity merit figures with that obtained by traditional methods found in literature. Simulation results considering genetic algorithm (GA) applied to multipath, DS/CDMA and MuChE and multi-user detection (MuD) show that the proposed genetic algorithm multi-user channel estimation (GAMuChE) yields a normalized mean square error estimation (nMSE) inferior to 11%, under slowly varying multipath fading channels, large range of Doppler frequencies and medium system load, it exhibits lower complexity when compared to both maximum likelihood multi-user channel estimation (MLMuChE) and gradient descent method (GrdDsc). A near-optimum multi-user detector (MuD) based on the genetic algorithm (GAMuD), also proposed in this work, provides a significant reduction in the computational complexity when compared to the optimum multi-user detector (OMuD). In addition, the complexity of the GAMuChE and GAMuD algorithms were (jointly) analyzed in terms of number of operations necessary to reach the convergence, and compared to other jointly MuChE and MuD strategies. The joint GAMuChE-GAMuD scheme can be regarded as a promising alternative for implementing third-generation (3G) and fourth-generation (4G) wireless systems in the near future. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This paper presents the design and implementation of an embedded soft sensor, i. e., a generic and autonomous hardware module, which can be applied to many complex plants, wherein a certain variable cannot be directly measured. It is implemented based on a fuzzy identification algorithm called ""Limited Rules"", employed to model continuous nonlinear processes. The fuzzy model has a Takagi-Sugeno-Kang structure and the premise parameters are defined based on the Fuzzy C-Means (FCM) clustering algorithm. The firmware contains the soft sensor and it runs online, estimating the target variable from other available variables. Tests have been performed using a simulated pH neutralization plant. The results of the embedded soft sensor have been considered satisfactory. A complete embedded inferential control system is also presented, including a soft sensor and a PID controller. (c) 2007, ISA. Published by Elsevier Ltd. All rights reserved.
Resumo:
This article presents improvement on a physical cardiovascular simulator (PCS) system. Intraventricular pressure versus intraventricular volume (PxV) loop was obtained to evaluate performance of a pulsatile chamber mimicking the human left ventricle. PxV loop shows heart contractility and is normally used to evaluate heart performance. In many heart diseases, the stroke volume decreases because of low heart contractility. This pathological situation must be simulated by the PCS in order to evaluate the assistance provided by a ventricular assist device (VAD). The PCS system is automatically controlled by a computer and is an auxiliary tool for VAD control strategies development. This PCS system is according to a Windkessel model where lumped parameters are used for cardiovascular system analysis. Peripheral resistance, arteries compliance, and fluid inertance are simulated. The simulator has an actuator with a roller screw and brushless direct current motor, and the stroke volume is regulated by the actuator displacement. Internal pressure and volume measurements are monitored to obtain the PxV loop. Left chamber internal pressure is directly obtained by pressure transducer; however, internal volume has been obtained indirectly by using a linear variable differential transformer, which senses the diaphragm displacement. Correlations between the internal volume and diaphragm position are made. LabVIEW integrates these signals and shows the pressure versus internal volume loop. The results that have been obtained from the PCS system show PxV loops at different ventricle elastances, making possible the simulation of pathological situations. A preliminary test with a pulsatile VAD attached to PCS system was made.
Resumo:
This paper addresses the single machine scheduling problem with a common due date aiming to minimize earliness and tardiness penalties. Due to its complexity, most of the previous studies in the literature deal with this problem using heuristics and metaheuristics approaches. With the intention of contributing to the study of this problem, a branch-and-bound algorithm is proposed. Lower bounds and pruning rules that exploit properties of the problem are introduced. The proposed approach is examined through a computational comparative study with 280 problems involving different due date scenarios. In addition, the values of optimal solutions for small problems from a known benchmark are provided.
Resumo:
This work discusses a 4D lung reconstruction method from unsynchronized MR sequential images. The lung, differently from the heart, does not have its own muscles, turning impossible to see its real movements. The visualization of the lung in motion is an actual topic of research in medicine. CT (Computerized Tomography) can obtain spatio-temporal images of the heart by synchronizing with electrocardiographic waves. The FOV of the heart is small when compared to the lung`s FOV. The lung`s movement is not periodic and is susceptible to variations in the degree of respiration. Compared to CT, MR (Magnetic Resonance) imaging involves longer acquisition times and it is not possible to obtain instantaneous 3D images of the lung. For each slice, only one temporal sequence of 2D images can be obtained. However, methods using MR are preferable because they do not involve radiation. In this paper, based on unsynchronized MR images of the lung an animated B-Repsolid model of the lung is created. The 3D animation represents the lung`s motion associated to one selected sequence of MR images. The proposed method can be divided in two parts. First, the lung`s silhouettes moving in time are extracted by detecting the presence of a respiratory pattern on 2D spatio-temporal MR images. This approach enables us to determine the lung`s silhouette for every frame, even on frames with obscure edges. The sequence of extracted lung`s silhouettes are unsynchronized sagittal and coronal silhouettes. Using our algorithm it is possible to reconstruct a 3D lung starting from a silhouette of any type (coronal or sagittal) selected from any instant in time. A wire-frame model of the lung is created by composing coronal and sagittal planar silhouettes representing cross-sections. The silhouette composition is severely underconstrained. Many wire-frame models can be created from the observed sequences of silhouettes in time. Finally, a B-Rep solid model is created using a meshing algorithm. Using the B-Rep solid model the volume in time for the right and left lungs were calculated. It was possible to recognize several characteristics of the 3D real right and left lungs in the shaded model. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Eucalyptus camaldulensis has great importance in Brazil because of their phenotypic plasticity for different environmental conditions, as soils, altitudes and rainfall. This study is an investigation of a base population of E. camaldulensis from Australia through a progeny test implanted in Selviria, MS. The trial was established in a randomized block design, with 25 families and 60 replications of single tree plots. Genetic parameters for anatomic traits and volume shrinkage were estimated, as well as their correlations with wood basic density. No significant differences among progenies were observed for the traits studied. The additive genetic variation coefficient at individual and among progeny levels ranged from low (0.26%) to high (16.98%). The narrow sense heritability at individual and family means levels also ranged from low (0.01) to high (0.87). This indicates that some traits are under strong genetic control and can be improved by selection. In the present situation, in order to attain the highest genetic gains, the sequential selection among and within progeny would be recommended.
Resumo:
A graph clustering algorithm constructs groups of closely related parts and machines separately. After they are matched for the least intercell moves, a refining process runs on the initial cell formation to decrease the number of intercell moves. A simple modification of this main approach can deal with some practical constraints, such as the popular constraint of bounding the maximum number of machines in a cell. Our approach makes a big improvement in the computational time. More importantly, improvement is seen in the number of intercell moves when the computational results were compared with best known solutions from the literature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Eight hundred and seventy-nine patients with acute kidney injury were retrospectively studied over year and eleven months for evaluation of urine volume as a risk factor for death. They were divided into five groups, according to the 24 h urine volume (UV): anuric (UV <= 50 mL/24 h, group 1), oliguric (UV > 50 mL/24 h and < 400 mL/24 h, group 2), and non-oliguric (UV >= 400 mL/24 h). Nonoliguric group was subdivided in three subgroups: UV > 400 mL/24 h and <= 1000 mL/24 h (group 3, reference group), UV > 1000 mL/24 h and <= 2000 mL/24 h (group 4), and UV > 2000 mL/24 h (group 5). Linear tendency test (Mantel extension) pointed out a significant increase in mortality with UV decrease (p < 0.001), confirmed by multivariate analysis. Anuric and oliguric patients had increased risk of respectively 95% and 76% times for death compared to controls (p < 0.05). Patients from groups 4 and 5 presented a reduced risk for death of 50% and 70%, respectively, p = 0.004 and p = 0.001. In conclusion, urine volume was a strong independent factor for mortality in this cohort of AKI patients.
Resumo:
Objective: To evaluate the usefulness of gamma-glutamyltransferase (GGT) and mean corpuscular volume (MCV), as well as that of the CAGE questionnaire, in workplace screening for alcohol abuse/dependence. Methods: A total of 183 male employees were submitted to structured interviews (Structured Clinical Interview for DSM-IV 2.0 and CAGE questionnaire). Blood samples were collected. Diagnostic accuracy and odds ratio were determined for the CAGE, GGT and MCV. Results: The CAGE questionnaire presented the best sensitivity for alcohol dependence (91%; specificity, 87.8%) and for alcohol abuse (87.5%, specificity, 80.9%), which increased when the questionnaire was used in combination with GGT (sensitivity, 100% and 87.5%, respectively; specificity, 68% and 61.5, respectively). CAGE positive results and/or alterations in GGT were less likely to occur among employees not presenting alcohol abuse/ dependence than among those presenting such abuse (OR for CAGE = 13, p < 0.05; OR for CAGE-GGT = 11, p < 0.05) or dependence (OR for CAGE = 76, p < 0.0 1; OR for GGT = 5, p < 0.0 1). Employees not presenting alcohol abuse/dependence were also several times more likely to present negative CAGE or GGT results. Conclusions: The use short, simple questionnaires, combined with that of low-cost biochemical markers, such as GGT, can serve as an initial screening for alcohol-related problems, especially for employees in hazardous occupations. The data provided can serve to corroborate clinical findings. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Introduction: The relevance of prostate size in the pathophysiology of lower urinary tract symptoms (LUTS) is controversial. We evaluated the urodynamic findings in patients with LUTS and small prostate volumes. Materials and Methods: 84 patients aged >= 50 years with LUTS and prostates < 40 ml were evaluated. All had an International Prostate Symptom Score (IPSS) >= 8. Average age was 62.0 +/- 8.1 years. We evaluated the impact of bladder outlet obstruction (BOO) and detrusor overactivity (DO) on the voiding symptoms and urodynamic findings. Results: Mean prostate volume was 29.2 +/- 7.2 ml and mean IPSS was 13.5 +/- 4.6. BOO was the main finding, affecting 42 (50.0%) patients, followed by detrusor underactivity (DU) in 41 (48.8%) and DO in 28 (33.3%) patients. Patients without BOO were significantly older than the obstructed (64.0 +/- 8.8 and 60.1 +/- 6.9 years, respectively; p = 0.026) and had an increased prevalence of DU (76.2 and 21.4%, respectively; p < 0.001). Comparison of patients with and without DO showed reduced bladder capacity and compliance in the DO group (p < 0.001). No other comparisons were significant. Conclusion: Half of the patients with LUTS and small prostates are not obstructed and may have DO or decreased detrusor contractility as the basis for their voiding symptoms. Our results emphasize the value of urodynamics in this population, especially when invasive treatments are being considered. Copyright (c) 2008 S. Karger AG, Basel.
Resumo:
Preoperative progressive pneumoperitoneum (PPP) is a safe and effective procedure in the treatment of large incisional hernia (size > 10 cm in width or length) with loss of domain (LIHLD). There is no consensus in the literature on the amount of gas that must be insufflated in a PPP program or even how long it should be maintained. We describe a technique for calculating the hernia sac volume (HSV) and abdominal cavity volume (ACV) based on abdominal computerized tomography (ACT) scanning that eliminates the need for subjective criteria for inclusion in a PPP program and shows the amount of gas that must be insufflated into the abdominal cavity in the PPP program. Our technique is indicated for all patients with large or recurrent incisional hernias evaluated by a senior surgeon with suspected LIHLD. We reviewed our experience from 2001 to 2008 of 23 consecutive hernia surgical procedures of LIHLD undergoing preoperative evaluation with CT scanning and PPP. An ACT was required in all patients with suspected LIHLD in order to determine HSV and ACV. The PPP was performed only if the volume ratio HSV/ACV (VR = HSV/ACV) was a parts per thousand yen25% (VR a parts per thousand yen 25%). We have performed this procedure on 23 patients, with a mean age of 55.6 years (range 31-83). There were 16 women and 7 men with an average age of 55.6 years (range 31-83), and a mean BMI of 38.5 kg/m(2) (range 23-55.2). Almost all patients (21 of 23 patients-91.30%) were overweight; 43.5% (10 patients) were severely obese (obese class III). The mean calculated volumes for ACV and HSV were 9,410 ml (range 6,060-19,230 ml) and 4,500 ml (range 1,850-6,600 ml), respectively. The PPP is performed by permanent catheter placed in a minor surgical procedure. The total amount of CO(2) insufflated ranged from 2,000 to 7,000 ml (mean 4,000 ml). Patients required a mean of 10 PPP sessions (range 4-18) to achieve the desired volume of gas (that is the same volume that was calculated for the hernia sac). Since PPP sessions were performed once a day, 4-18 days were needed for preoperative preparation with PPP. The mean VR was 36% (ranged from 26 to 73%). We conclude that ACT provides objective data for volume calculation of both hernia sac and abdominal cavity and also for estimation of the volume of gas that should be insufflated into the abdominal cavity in PPP.
Resumo:
Background: Different hemodynamic parameters including static indicators of cardiac preload as right ventricular end-diastolic volume index (RVEDVI) and dynamic parameters as pulse pressure variation (PPV) have been used in the decision-making process regarding volume expansion in critically ill patients. The objective of this study was to compare fluid resuscitation guided by either PPV or RVEDVI after experimentally induced hemorrhagic shock. Methods: Twenty-six anesthetized and mechanically ventilated pigs were allocated into control (group I), PPV (group II), or RVEDVI (group III) group. Hemorrhagic shock was induced by blood withdrawal to target mean arterial pressure of 40 mm Hg, maintained for 60 minutes. Parameters were measured at baseline, time of shock, 60 minutes after shock, immediately after resuscitation with hydroxyethyl starch 6% (130/0.4), 1 hour and 2 hours thereafter. The endpoint of fluid resuscitation was determined as the baseline values of PPV and RVEDVI. Statistical analysis of data was based on analysis of variance for repeated measures followed by the Bonferroni test (p < 0.05). Results: Volume and time to resuscitation were higher in group III than in group II (group III = 1,305 +/- 331 mL and group II = 965 +/- 245 mL, p < 0.05; and group III = 24.8 +/- 4.7 minutes and group II = 8.8 +/- 1.3 minutes, p < 0.05, respectively). All static and dynamic parameters and biomarkers of tissue oxygenation were affected by hemorrhagic shock and nearly all parameters were restored after resuscitation in both groups. Conclusion: In the proposed model of hemorrhagic shock, resuscitation to the established endpoints was achieved within a smaller amount of time and with less volume when guided by PPV than when guided by pulmonary artery catheter-derived RVEDVI.
Resumo:
BACKGROUND: Recently, studies have been conducted examining the efficacy of 3% hypertonic saline solution (HS) for the treatment of traumatic brain injury; however, few studies have analyzed the effects of 3% hemorrhagic shock during hemorrhagic shock. The aim of this study was to test the potential immunomodulatory benefits of 3% hemorrhagic shock resuscitation over standard fluid resuscitation. METHODS: Wistar rats were bled to a mean arterial pressure of 35 mm Hg and then randomized into 3 groups: those treated with lactated Ringer`s solution (LR; 33 mL/kg, n = 7), 3% HS (10 mL/kg, n = 7), and 7.5% HS (4 mL/kg, n = 7). Half of the extracted blood was reinfused after fluid resuscitation. Animals that did not undergo shock served as controls (n = 5). Four hours after hemorrhagic shock, blood was collected for the evaluation of tumor necrosis factor-a and interleukin-6 by enzyme immunoassay. Lung and intestinal samples were obtained for histopathologic analysis. RESULTS: Animals in the HS groups had significantly higher mean arterial pressure than those in the LR group 1 hour after treatment. Osmolarity and sodium levels were markedly elevated in the HS groups. Tumor necrosis factor-alpha and interleukin-6 levels were similar between the control and HS groups but significantly higher in the LR group (P < .05). The lung injury score was significantly higher in the LR group compared with the 7.5% HS and 3% HS groups (5.7 +/- 0.7, 2.1 +/- 0.4, and 2.7 +/- 0.5, respectively). Intestinal injury was attenuated in the 7.5% HS and 3% HS groups compared with the LR group (2.0 +/- 0.6, 2.3 +/- 0.4, and 5.9 +/- 0.6, respectively). CONCLUSIONS: A small-volume resuscitation strategy modulates the inflammatory response and decreases end-organ damage after HS. Three percent HS provides immunomodulatory and metabolic effects similar to those observed with conventional concentrations of HS. (C) 2009 Elsevier Inc. All rights reserved.